
QuASoQ 2022
10th International Workshop on
Quantitative Approaches to Software Quality

co‐located with APSEC 2022
virtual, December 6th , 2022

Editors:

Horst Lichter, RWTH Aachen University, Germany
Selin Aydin, RWTH Aachen University, Germany
Thanwadee Sunetnanta, Mahidol University, Thailand
Toni Anwar, University Petronas, Malaysia

PREPRINT

Table of Content

PAPER 1:
Hiroshi Demanou, Akito Monden and Masateru Tsunoda
A Dynamic Model Selection Approach to Mitigate the Change of Balance
Problem in Cross‐Version Bug Prediction

PAPER 2:
Zhaojia Lai, Haipeng Qu and Lingyun Ying
A Composite Discover Method for Gadget Chains in Java Deserialization
Vulnerability

PAPER 3:
Rafed Muhammad Yasir and Ahmedul Kabir
Exploring the Impact of Code Style in Identifying Good Programmers

PAPER 4:
Umamaheswara Sharma B and Ravichandra Sadam
An Empirical Evaluation of Defect Prediction Models Using Project‐
Specific Measures

PAPER 5:
Miguel Campusano, Simon Hacks and Eun‐Young Kang
Towards Model Driven Safety and Security by Design

A Dynamic Model Selection Approach to Mitigate the
Change of Balance Problem in Cross-Version Bug Prediction
Hiroshi Demanou1, Akito Monden1 and Masateru Tsunoda2

1Okayama University, 1-1, Tsushima-Naka, 3-chome, Kita-Ku, Okayama 700-8530, Japan
2Kindai University, 3-4-1, Kowakae, Higashiosaka City, Osaka 577-8502, Japan

Abstract
This paper focuses on the “change of balance” problem in cross-version bug prediction where the percentage of buggy
modules changes between different versions. Such difference badly affects the prediction performance. To mitigate this
problem, this paper employs a dynamic model selection approach equipped with two prediction models (always-buggy
model and always-non-buggy model) and Bandit algorithm to select better models in each one-module-by-one prediction.
An experiment with data sets of 20 releases of 10 open source software showed that the proposed approach can improve
F1-measure compared with the conventional cross-version prediction.

Keywords
software quality assurance, defect-prone module prediction, Bandit algorithm

1. Introduction
Defect-prone software module prediction (or simply, bug
prediction) has been studied for the effective software
quality assurance [1][2][3]. Typically, prediction is held
in cross-version situation where a prediction model is
built from data of a past project, and it is applied to the
next version of that project. Based on the prediction
result, practitioners can allocate limited testing efforts
to the defect-prone (buggy) modules to find more bugs
with smaller effort.

However, it has been pointed out that such cross-
version prediction very often does not work well because
of concept drift [4][5]. As one of the factors of concept
drift, this paper focuses on the “change of balance” be-
tween the number of buggy modules and not buggy mod-
ules. Indeed, such balance very often changes between
different versions of software. For example, in case of
Ant project, the percentage of buggy modules was 10.9%
in version 1.5 while it becomes 29.3% in next version 1.6
(as shown in Table 2). Such a difference badly affects the
prediction performance of the models in general.

To mitigate this problem, assuming that the modules
are predicted one by one manner, this paper employs a dy-
namic model selection approach equipped with two pre-
diction models: (1) always-buggy model and (2) always-
non-buggy model. The always-buggy model outputs
“buggy” to any modules input to the model, while the
always-non-buggy model outputs “not buggy” to any

QuASoQ 2022: 10th International Workshop on Quantitative
Approaches to Software Quality, December 06, 2022, virtual
$ demanouconstance@yahoo.fr (H. Demanou);
monden@okayama-u.ac.jp (A. Monden); tsunoda@info.kindai.ac.jp
(M. Tsunoda)

© 2022 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

modules. By employing Bandit algorithm to give scores
to two models in each one-by-one prediction, we expect
that the relatively better model is wisely selected regard-
less of the percentage of bugs in the target version.

To date, there are several attempts to employ Bandit
algorithm in bug prediction [6][7], none of them tries to
solve the “change of balance” problem in cross-version
bug prediction.

To evaluate the proposed method, this paper conducts
an empirical study using datasets of 20 releases of 10
open source software projects.

2. Cross-version bug prediction
and its balance problem

2.1. Cross-version bug prediction
To date, various bug prediction techniques have been pro-
posed and evaluated [1][2][3][7][8]. Bug prediction is
carried out before software testing and/or code review. In
this paper, we focus on bug module classification, which
aims to classify a module as buggy (containing one or
more bugs) or not buggy (containing no bug). The ob-
jective variable is the probability that a module belongs
to the buggy class. Typically, prediction is held in cross-
version manner where a prediction model is built from
data of a past project, and it is applied to the next version
of that project.

2.2. Problem of change of balance
between versions

In cross-version bug prediction, balance between the
number of buggy modules and not buggy modules is a
dominant factor of prediction accuracy. For example, if

QuASoQ 2022 - Preprint

1

mailto:demanouconstance@yahoo.fr
mailto:monden@okayama-u.ac.jp
mailto:tsunoda@info.kindai.ac.jp
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

buggy modules are extremely less than not buggy mod-
ules, it is very difficult to gain high precision [9]. More-
over, such balance very often changes between different
versions, and this cause bad prediction performance in
cross-version prediction.

In case the older version has fewer bugs than the newer
version, precision tends to become large and recall tends
to become small. On the other hand, if the older version
has more bugs than the newer version, precision tends
to be small and recall tends to be large. For example,
in case of Ant project, the older version has fewer bugs
(as shown in Table 2), and in such a case, precision is
high (.600) but recall becomes small (.163) as later shown
in Table 4. Such change of balance between versions
very often happens in cross-version prediction, making
it difficult to obtain high prediction accuracy.

3. Proposed solution

3.1. Bandit algorithm
Here, we introduce Bandit algorithm which we employ
in this paper to mitigate the problem of balance between
versions. The K-arm bandit problem is a problem where
a user faced with slot machines, must decide which ma-
chines to play. Each machine gives different average
reward that the user does not know in advance. The goal
is to maximize the user’s cumulative reward. Consider
K slot machines. In game turn n, the user will receive a
reward which depends on the machine he chooses. A ba-
sic example is the case where machine 𝑖 brings a reward
of 1 with probability 𝑝 and −1 with probability 1 − 𝑝.
In our study, considering that a user wants to conduct
unit testing for a set of modules, instead of selecting a
slot machine, the user selects a module (i.e., a source file)
one-by-one and tries to find the bug prediction model
that brings the highest average reward (i.e. prediction
performance) to conduct testing. The strategy for the
armed bandit problem is an algorithm that chooses the
next prediction model based on previous choices and the
rewards obtained. This paper introduces the most basic
algorithm called epsilon-greedy algorithm. In this algo-
rithm, in each trial, an arm is selected at random for a
proportion 𝜖, and the best arm (having the largest total
reward) is selected for a proportion 1− 𝜖. The proper 𝜖
value may depends on the context. As a simple example,
here we consider two arms X and Y exist, and want to
maximize the cumulative reward by selecting appropri-
ate arm. An example of arm selection in each trial is
illustrated in Table 1. Each trial is proceeded as follows.

1. In the initial trial, an arm is selected randomly.
Arm X is selected in this case. Earned reward is
−1.

Table 1
An example of applying a bandit algorithm.

Trial Selected Earned X’s total Y’s total
Arm reward reward reward

1 X -1 -1 0
2 Y 1 -1 1
3 X 1 0 1

2. Arm Y is selected for a proportion 1− 𝜖, as Arm
Y’s total reward is larger than that of X. Earned
reward is 1.

3. The arm is randomly selected for a proportion 𝜖.
Arm X is selected in this case. Earned reward is
1.

As we illustrated above, arm X received the reward
of −1 in the initial trial, and this makes arm X difficult
to be selected in later trials. However, the parameter
𝜖 enables arm X to be selected sometimes to give it to
receive positive reward.

3.2. Basic idea to solve the change of
balance problem

The problem of change of balance between two versions
can be classified into the following two cases (a) the
newer version has fewer bugs, or (b) the newer version
has greater bugs. The problem here is that it is not possi-
ble to determine in advance whether we are in case (a) or
(b). However, if the bug prediction and testing is carried
out on a one-by-one basis, we are gradually getting to
be aware of it. That is, we assume the following process:
(1) we conduct bug prediction to all modules, (2) we pick
a single module that has highest probability of being
“buggy”, (3) conduct testing if the module is predicted as
“buggy” and (4) now we know the prediction is correct or
wrong. Repeating the above process, we expect that the
false-positive will increase if we are in case (a). On the
contrary, we expect that the true-positive will increase if
we are in case (b). Based on the above expectation, our
idea is to employ two different types of bug prediction
models as follows:

1. Always-buggy model: It always predicts that there
is a bug in a module.

2. Always-non-buggy model: It always predicts that
there is no bug in a module.

Firstly, we employ a normal bug prediction model to
predict all modules to obtain the probability of being
“buggy” of each module. Then, a one-by-one prediction
process is carried out such that: a module having the
largest probability is picked, the prediction model is se-
lected by Bandit algorithm, prediction result is obtained,

QuASoQ 2022 - Preprint

2

the reward is given to all prediction models based on the
correctness of the prediction

3.3. Proposed algorithm
Based on the basic idea above, we propose an algorithm
to select a bug prediction model as follows.
(Step. 1) Probability computation

In this step, bug prediction is conducted to all modules
using the ordinary model to obtain the probability of
being “buggy” of all modules.
(Step. 2) Target module selection

We pick a single module that has the highest probabil-
ity of being “buggy”, from a list of unselected modules.
The reason why we start with the buggiest module is
that, it is natural for a practitioner to focus first on the
riskiest part of the software and examine it to see if there
is any bug or serious problem.
(Step. 3) Model selection based on the epsilon-greedy
algorithm

Generate a random number x of [0, 1]; and,
3-1) if 𝑥 < 𝜖, a bug prediction model is randomly

selected from two models (always-buggy and always-
non-buggy).

3-2) If 𝑥 ≥ 𝜖, select a bug prediction model with the
largest sum of recent reward.
(Step. 4) Prediction

Conduct bug prediction with the selected model.
(Step. 5) Testing

Conduct testing if the selected model predicts the tar-
get module as “buggy.” No test is carried out if “not buggy”
is predicted. This is because bug prediction aims to re-
duce the cost of testing by testing only the modules likely
to have a bug.
(Step. 6) Rewarding

Assuming that predictions were made by both two
models, the reward +1 is given to a model if the predic-
tion was correct, and -1 is given if the prediction was in-
correct. Note that rewarding is conducted only if testing
is conducted in Step 5. In Section 3-1, in the conventional
Bandit algorithm, the reward was calculated for only one
selected arm (i.e. bug prediction model), but in our pro-
posal, the reward for all models is calculated. Because,
in the case of a slot machine, we can only bet by putting
money in one of them each time, but since bug prediction
can be executed by all prediction models in every trial,
there is no point in limiting the calculation of reward to
a single prediction model. Therefore, we decided to use
both models in each trial.
(Step. 7) Compute the sum of recent rewards for all mod-
els.

Here, we ignore “old” rewards because we want to se-
lect a model with good “recent” performance. Therefore,
we set a threshold w on the number of trials, and the
calculation of total reward includes only the recent w

Table 2
20 releases of 10 data sets used in the experiment.

Project Release Modules Modules % of
Name with modules

bugs with
bugs

Ant 1.5 293 32 10.9
1.6 350 92 26.3

Camel 1.4 856 144 16.8
1.6 945 188 19.9

Forrest 0.7 29 5 17.2
0.8 32 2 6.3

Ivy 1.4 241 16 6.6
2.0 352 40 11.4

Jedit 4.2 367 48 13.1
4.3 492 11 2.2

Log4j 1.1 109 37 33.9
1.2 205 189 92.2

Lucene 2.2 247 144 58.3
2.4 340 203 59.7

Poi 2.5 384 248 64.6
3.0 441 281 63.7

Prop 4 8702 840 9.7
5 8506 1298 15.3

Synapse 1.0 157 16 10.2
1.1 222 60 27.0

trials. We refer to this threshold w simply as “window
size.” The optimum w is experimentally determined.
(Step. 8) If the list of unselected modules is empty then
end else go to Step. 2.

4. Evaluation

4.1. Data set
As shown in Table 2, this paper uses 20 releases of 10 open
source software (OSS) project data sets to conduct cross-
release prediction. Each project includes two releases
where older release is used as a fit data set (for building
a defect prediction model) and newer release is used as a
test data set (for evaluation). The percentage of modules
widely varies among projects and/or versions (smallest is
2.2% and largest is 92.9%.) Metrics included in these data
sets are shown in Table 3. These data sets are donated
by Jureczko et al. [10][11] and the details of the data
measurement are described in [11]. We obtained these
data sets from SeaCraft repository [12].

QuASoQ 2022 - Preprint

3

Table 3
Metrics used in the data sets.

Name Definition

WMC Weighted Methods per Class
DIT Depth of Inheritance Tree
NOC Number of Children of a class
CBO Coupling Between Classes
RFC Response for a Class
LCOM Lack of Cohesion in Methods
LCOM3 Lack of Cohesion in Methods
NPM The number of public methods
DAM Data Access Metric
MOA Measure of Aggregation
MFA Measure of Functional Abstraction
CAM Cohesion Among Methods of Class
IC Inheritance Coupling
CBM Coupling Between Methods
AMC Average Methods Complexity
Ca Afferent couplings
Ce Efferent couplings
MaxCC Maximum value of cyclomatic complexity of

methods in a class
AvgCC Arithmetic mean of cylcomatic complexity of

methods in a class
LOC Lines of Code

4.2. Bug prediction model
This paper employ random forest because it was shown
as one of the best models in bug prediction [13] and
it shows performance comparable to the modern auto-
ML framework [14]. Although there exist various other
predictors, improvement of defect prediction accuracy
by employing them is out of scope of this study. To build
random forest models, we use the statistical computing
and graphics toolkit R and its randomForest library. We
use the default parameter values of randomForest library,
e.g. the number of trees to grow ntree = 500, and the
number of variables randomly sampled as candidates
as each split mtry = sqrt(p), where p is the number of
predictor variables.

4.3. Accuracy measures
This paper employs three commonly used accuracy mea-
sures to evaluate the prediction performance: precision,
recall and F1-measure.

4.4. Result and discussion
Table 4 shows the result of defect prediction by the con-
ventional method, that is, cross-version bug prediction
with random forest. For the project Ivy, the values of pre-
cision and recall are zero, in such a case we consider the
F1-measure to be zero. The average of precision (0.488)

Table 4
The bug prediction performance of the conventional method.

Project Precision Recall F1
Name

Ant .600 .163 .256
Camel .481 .266 .342
Forrest .200 .500 .286
Ivy 0 0 0
Jedit .132 .455 .204
Log4j .947 .286 .439
Lucene .650 .685 .667
Poi .744 .722 .733
Prop .493 .026 .050
Synapse .636 .117 .197

Average .488 .322 .317

is higher than that of recall (0.322). The average of F1-
measure (0.317) is similar to that of recall.

Table 5 shows the result of the proposed method for
window size 𝑤 = 𝑁/𝐴, 10, 50 and 100, and 𝜖 = 0, .1,
.2, .3 and .4. Here, 𝑤 = 𝑁/𝐴 means there is no window
(it can be considered that 𝑤 = ∞). The gray cells in the
table have the highest values in each window size.

For all 𝑤 and 𝜖 ≥ .2 cases, the average F1-measure
was better than that of the conventional method, which
suggests the effectiveness of the proposed method. Com-
pared with the conventional method, the average preci-
sion was decreased, but the average recall was greatly
improved, resulting in the improved F1-measure. Since
the overlook of bugs is crucial in software testing, we
believe improvement of recall is preferable from the prac-
tical point of view.

Interestingly, 𝜖 = .2 or .3 showed the best perfor-
mance for all window sizes. Since 𝜖 = .2 and .3 cases
are always better than 𝜖 = 0 cases, this suggests the ef-
fectiveness of the epsilon-greedy algorithm for dynamic
model selection. On the other hand, the window size
was found to have negative effect on prediction perfor-
mance since 𝑤 = 𝑁/𝐴 cases showed better performance
than 𝑤 = 10, 50 and 100 cases. Therefore, it can be
said that the window is not necessary in the current
form of the proposal. For more detailed analysis, Ta-
ble 6 shows the prediction performance of the proposed
method (𝑤 = 𝑁/𝐴, 𝜖 = .2) for each data set. Compared
to the result of the conventional method (Table 4), 7 data
sets (Ant, Camel, Ivy, Log4j, Lucene, Prop and Synapse)
showed improvements in F1-measure, while 3 data sets
(Forrest, Jedit and Poi) showed decrease in F1-measure.
Looking at Table 2, it seems that the Forrest data set is
too small to evaluate. It has only 2 buggy modules in
new version. Also, the Jedit data set would be inadequate
for evaluation since it contain only 11 buggy modules
out of 492 modules. When ignoring these two data sets,

QuASoQ 2022 - Preprint

4

Table 5
The average bug prediction performance of the proposed
method.

𝑤 𝜖 Precision Recall F1

N/A 0 .380 .346 .310
.1 .410 .437 .365
.2 .411 .497 .393
.3 .397 .497 .386
.4 .393 .525 .390

10 0 .415 .261 .219
.1 .400 .285 .302
.2 .421 .383 .356
.3 .413 .425 .359
.4 .392 .430 .351

50 0 .371 .318 .263
.1 .448 .423 .387
.2 .427 .459 .374
.3 .395 .401 .349
.4 .394 .473 .363

100 0 .369 .331 .266
.1 .408 .436 .366
.2 .411 .485 .379
.3 .376 .430 .350
.4 .379 .460 .363

the average F1-measure by the conventional method is
.357 and that in the proposed method is .459. Regarding
the Poi data set, where the proposed method was not
effective, the reason for this result may be that the newer
version has fewer bugs than the older version. Based on
the investigation of gained rewards in each trial in this
data set, we found that always-buggy models received
many minus rewards, while always-non-buggy models
did not. This is considered to be not fair for always-buggy
models because testing is conducted only if the predic-
tion result is “buggy.” Therefore, always-buggy models
have larger chance to get minus rewards than always-
non-buggy models. Resolving such asymmetries is an
important issue for the future.

5. Threats to validity
In this section we discuss the threats to validity of our
work. We used the single prediction method (random
forest). Our important future work is to employ other
prediction methods to increase the validity of the result.
Another issue is that we conducted only one trial (i.e. no
repetition) for each prediction. Since random forest can
output different results for the same data set, it is our
future work to conduct repetitions in predictions.

In this study we used data sets of 20 releases of 10 open
source software donated by Jureczko et al. [10][11]. In
future, we will consider using data sets from other data

Table 6
Details of the result of the proposed method (no window,
𝜖 = .2).

Project Precision Recall F1
Name

Ant .437 .598 .505
Camel .342 .356 .349
Forrest .143 .500 .222
Ivy .035 .025 .029
Jedit .026 .091 .041
Log4j .924 .904 .914
Lucene .603 .897 .721
Poi .623 .765 .687
Prop .186 .129 .153
Synapse .381 .267 .314

Average .411 .497 .393

sources to increase the generalization of the results.
In addition, we used three commonly-used perfor-

mance measures (precision, recall and F1-measure) for
evaluation. However, there are several criticism to these
measures [9]. Therefore, we will consider adding other
performance measures such as probability of false alarm
(pf) and Matthews Correlation Coefficient (MCC) [15].

Simulating a sectioning command by setting the first
word or words of a paragraph in boldface or italicized
text is not allowed.

6. Conclusion
In this paper, we proposed an approach to mitigate the
“change of balance” problem in cross-version bug pre-
diction. An experimental evaluation with 10 data sets
showed that, by using the proposed approach, although
the average precision was decreased, the average re-
call was greatly improved, resulting in the improved F1-
measure. Since the overlook of bugs is crucial in general,
we believe that improvement of recall helps practitioners
in software quality assurance.

There are several future works as we denoted in the
threats to validity session. In addition, this paper com-
pared the proposed method with the most basic cross-
version prediction using random forest. Since there are
attempts to mitigate the class imbalance problem, such as
over/under sampling [1], it is our important future work
to compare our approach with these methods.

7. Acknowledgement
This work was supported in part by JSPS KAKENHI Grant
number JP20K11749 and JP20H05706.

QuASoQ 2022 - Preprint

5

References
[1] K. E. Bennin, J. Keung, P. Phannachitta, A. Monden,

S. Mensah, Mahakil: diversity based oversampling
approach to alleviate the class imbalance issue in
software defect prediction, IEEE Trans. Software
Engineering 44 (2018) 534–550.

[2] Y. Kamei, S. Matsumoto, A. Monden, K. Matsumoto,
B. Adams, A. E. Hassan, Revisiting common bug
prediction findings using effort aware models, Proc.
26th IEEE Int’l Conference on Software Mainte-
nance (ICSM2010) (2010) 1–10.

[3] A. Monden, T. Hayashi, S. Shinoda, K. Shirai,
J. Yoshida, M. Barker, K. Matsumoto, Assessing the
cost effectiveness of fault prediction in acceptance
testing, IEEE Transactions on Software Engineering
39 (2013) 1345–1357.

[4] J. Ekanayake, J. Tappolet, H. C. Gall, A. Bernstein,
Tracking concept drift of software projects using
defect prediction quality, Proc. IEEE Working Con-
ference on Mining Software Repositories (2009).

[5] M. A. Kabir, J. W. Keung, K. E. Bennin, M. Zhang,
Assessing the significant impact of concept drift in
software defect prediction, Proc. IEEE 43rd Annual
Computer Software and Applications Conference
(COMPSAC’19) (2019).

[6] T. Asano, M. Tsunoda, K. Toda, A. Tahir,
K. E.Bennin, K. Nakasai, A. Monden, K. Matsumoto,
Using bandit algorithms for project selection in
cross-project defect prediction, Proc. International
Conference on Software Maintenance and Evolu-
tion (ICSME) (2021) 19–33.

[7] T. Hayakawa, M. Tsunoda, K. Toda, K. Nakasai,
A. Tahir, K. E. Bennin, A. Monden, K. Matsumoto,
A novel approach to address external validity issues
in fault prediction using bandit algorithms, IEICE
Transactions on Information and Systems E104.D
(2021) 327–331.

[8] T. M. Khoshgoftaar, A. Pandya, D. Lanning, Appli-
cation of neural networks for predicting program
fault, Annals of Software Engineering 1 (1995) 141–
154.

[9] T. Menzies, A. Dekhtyar, J. Distefano, J. Greenwald,
Problems with precision: A response to comments
on data mining static code attributes to learn defect
predictors, IEEE Transactions on Software Engi-
neering 33 (2007) 637–640.

[10] M. Jureczko, L. Madeyski, Towards identifying soft-
ware project clusters with regard to defect predic-
tion, Proc. 6th International Conference on Predic-
tive Models in Software Engineering (PROMISE’10)
(2010) 9:1–9:10.

[11] M. Jureczko, D. Spinellis, Using object-oriented
design metrics to predict software defects, In Mod-
els and Methods of System Dependability. Oficyna

Wydawnicza Politechniki WrocÅCawskiej (2010)
69–81.

[12] T. Menzies, R. Krishna, D. Pryor, The seacraft
repository of empirical software engineering data,
https://zenodo.org/communities/seacraft (2017).

[13] S. Lessmann, B. Baesens, C. Mues, S. Pietsch, Bench-
marking classification models for software defect
prediction: A proposed framework and novel find-
ings, IEEE Trans. on Software Engineering 34 (2008)
485–496.

[14] K. Tanaka, A. Monden, Z. Yücel, Software de-
fect prediction using automated machine learn-
ing, Proc. 20th IEEE/ACIS International Conference
on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing
(SNPD 2019) (2019) 490–494.

[15] D. Chicco, G. Jurman, The advantages of the
matthews correlation coefficient (mcc) over f1 score
and accuracy in binary classification evaluation,
BMC Genomics 21 (2020).

QuASoQ 2022 - Preprint

6

A Composite Discover Method for Gadget Chains in Java
Deserialization Vulnerability
Zhaojia Lai1, Haipeng Qu1,* and Lingyun Ying2

1Ocean University of China, Qingdao, China
2QI-ANXIN Techlology Research Institute, Beijing, China

Abstract
The Java deserialization vulnerability is the most dangerous and widely affected. Since this vulnerability was proposed,
numerous security practitioners have studied it and developed related detection and defence tools. The discovery of the
program’s potential gadget chains is the most effective defensive measure. Previously, gadget chains have relied on manual
search. Automating discover gadget chains is essential for Java security. However, there are no practical tools to achieve this.

So, we propose a new composite discovery method that generates the corresponding byte streams based on the static
analysis results and performs deserialization detection. Our innovation combines serialization protocols and reflection
mechanisms to generate objects dynamically and implement attack injection and detection. The evaluation verified its
effectiveness, where we found 52 available gadget chains in Apache Commons Collections.

Keywords
Java security, static analysis, dynamic verification

1. Introduction
Java serialization is a mechanism for converting an object
to a byte stream, which significantly expands the abil-
ity of Java programs to transfer objects in networks[1]
and provides the condition for RMI(Remote Method
Invocation)[2]. Java deserialization is the reverse of
Java serialization. It reconstructs a byte stream to an
objects[3]. However, this process could trigger some
magic methods that can spontaneously call other meth-
ods, perhaps even another magic method. Magic methods
make up the gadget chain[4].

An attacker can construct a byte stream to control the
method call chain during deserialization and trigger dan-
gerous methods. It could cause a privilege escalation, in-
formation disclosure, and RCE(remote code execution)[5].
In addition, this vulnerability is also widely spread. It has
dramatically affected many well-known programs such
as Weblogic, Jboss, etc[6]. The total of Java deserializa-
tion vulnerabilities in CVE(Common Vulnerabilities &
Exposures) is increasing yearly. In 2021, up to 17% of Java-
related CVEs are related to Java deserialization. Most of
such vulnerabilities are high-risk due to RCE(eg.CVE-
2021-36981[7], CVE-2021-35464[8]).

Although there are already programs[9, 10, 11] to de-
tect and intercept such attacks, we prefer to detect po-

QuASoQ 2022: 10th International Workshop on Quantitative Ap-
proaches to Software Quality, December 06, 2022, virtual
* Corresponding author
$ Redomichelan@stu.ouc.edu.cn (Z. Lai); Quhaipeng@ouc.edu.cn
(H. Qu); yinglingyun@qianxin.com (L. Ying)
� 0000-0002-3402-1438 (Z. Lai)

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073

tential gadget chains during the development process
to maintain the security and stability of the software.
However, there is no good solution for it.

Gadget Inspector[12] is a tool based on static taint
analysis. It uses a very efficient method of symbolic exe-
cution, which generates call graphs efficiently. However,
the lack of static analysis and search strategies makes it
very prone to false positives and negatives. In practice,
it is challenging to generate an effective gadget chain.

Rasheed proposed[13] a Fuzzer based on static analysis
bootstrap, which guides Fuzzer to generate byte stream
through the heap access path. This method relies heavily
on the initial results of static analysis. The problem of too
few static analysis results and the byte stream’s structural
variation will lead to unsatisfactory results. Although it
will not produce false positives, it will still produce many
false negatives.

Therefore, we propose a novel approach to discovering
gadget chains. This approach follows the static analy-
sis of Gadget Inspector to obtain the gadget chains to
be verified. We still use symbolic execution to generate
call graphs in this work. These call graphs can be ab-
stracted into a collection of <caller, callee array>. The
gadget Inspector produces false negatives because it uses
a breadth-first search algorithm (BFS) to traverse the call
graph. This BFS does not consider that multiple gadget
chains may share nodes, which leads to only one of the
multiple gadget chains passing through the same node
will be searched. Therefore, We use a depth-first search
algorithm that traverses a single node multiple times to
avoid this problem.

To remove the false positives in the static analysis,
We propose a matching dynamic verification mechanism© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

QuASoQ 2022 - Preprint

7

mailto:Redomichelan@stu.ouc.edu.cn
mailto:Quhaipeng@ouc.edu.cn
mailto:yinglingyun@qianxin.com
https://orcid.org/0000-0002-3402-1438
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org

We propose a matching dynamic verification mechanism
based on the Java serialization protocol and reflection
mechanisms. This dynamic verification can dynami-
cally generate the object corresponding to each gadget
chain. This method, called GCGM(Gadget Core Growth
Method), collates a class list based on the gadget chain
and generates an object bottom-up according to the gad-
get core. The implementation of GCGM relies on the
Java reflection mechanism, which can get all methods
and properties based on a class name. The objects dy-
namically generated by GCGM will be serialized and
injected with malicious behaviour to generate a byte
stream, which the deserialization portal can verify read-
Object().

Our contributions are as follows:

• We have improved the search algorithm of Gadget
Inspector to reduce false negatives.

• We propose a dynamic verification to remove
false positives based on Java serialization protocol
and reflection.

2. Related Work
This section will introduce the gadget chain in Java deseri-
alization vulnerability and some detection efforts. These
efforts can be divided into two types, fingerprinting-
based detection, and active discovery detection.

2.1. Gadget Chain
The Java deserialization vulnerability and the first gadget
chain were discovered and proposed by Chris Frohoff[14].
In the Java deserialization vulnerability, the gadget chain
is the method call chain from the deserialization entry
method readObject() to the command execution method
exec()[12].

Java deserialization recovers a byte stream into a Java
object[3]. This complex refactoring process may trig-
ger some magic methods. A magic method will call an-
other method, even another magic method. For example,
HashMap.put() is a magic method because it can automat-
ically call HashMap.hash(). The successive calls of these
magic methods form a gadget chain. The byte stream
determines the gadget chain. An attacker can construct
a byte stream to control the direction of the gadget chain
to trigger some specific methods to achieve remote code
execution.

2.2. Fingerprinting-based Detection
Since many security researchers have discovered many
gadget chains manually, fingerprinting-based detection

implemented by integrating these gadget chains is an
efficient detection method.

Ysoserial[14] is a detection program that integrates a
large number of gadget chains. It can quickly generate
payloads for specific Java libraries to detect Java deserial-
ization vulnerabilities. Marshalsec[15] is a tool similar to
Ysoserial, which supports a broader range of libraries but
cannot discover gadget chains. The Java Deserialization
Scanner[16] can confirm the effectiveness of this strategy.
It is a plug-in for the well-known penetration testing tool
Burp Suite. It can use Ysoserial to generate payloads for
penetration testing of targets for deserialization vulnera-
bilities.

However, fingerprinting-based detection can only de-
tect the presence of known gadget chains in the program,
but not unknown gadget chains in the program.

2.3. Active Discovery Detection
Discovering unknown gadget chains in a program is suit-
able for software security.

Haken’s proposed Gadget Inspector[12] in 2017 is the
first to enable the active discovery of gadget chains.

Its implementation relies on the following two key
steps:

1. Generate passthrough dataflow and passthrough
callgraph using symbolic execution.

2. Search gadget chains in the passthrough call-
graph by BFS(Breadth First Search).

Gadget Inspector is an effective tool because it discovers
some new gadget chains in the evaluation. However, it
produces many false positives and false negatives. False
positives are because it is a static analysis tool that does
not generate results in the actual deserialization process.
False negatives are because its search algorithm does not
consider the possibility of multiple gadget chains having
common nodes.

In 2020, Rasheed[13] proposed a hybrid analysis strat-
egy to avoid false positives. It uses static analysis results
as a guide for fuzzing. The advantage is that it does not
make false positives because it will execute a trampo-
line method and observe if the dynamic sink method is
triggered. To get more results, it used fuzzing to mutate
the byte stream. However, the byte stream of Java serial-
ization is highly structured, which makes fuzzing chal-
lenging to perform effectively. This strategy of hybrid
analysis provides new ideas for gadget chain discovery,
but from its evaluation, it makes a lot of false negatives.

3. Propose Approach
This section proposes a new active discovery detection
strategy to reduce false positives and negatives. It is

QuASoQ 2022 - Preprint

8

implemented in two steps: static analysis and dynamic
verification.

Firstly, the static analysis makes many gadget chains.
This step is similar to Gadget Inspector, but we optimize
the search algorithm to get as many gadget chains as pos-
sible to reduce false negatives. The dynamic verification
dynamically generates the corresponding byte stream
based on each gadget chain. These byte streams trigger
the detector during deserialization, while false positives
cannot complete this process.

3.1. Gadget Core
Our work relies on the fact that multiple gadget chains
in the target program may have common vital nodes. We
call such vital nodes gadget core. A gadget chain can be
abstracted as source->gadget core->sink. The subchain
gadget core->sink is called the core chain. The subchain
source->gadget core is called the edge chain.

In a target program, gadget core is always sparse, core
chain is always unique. So we simplify the discovery of
the gadget chain to the discovery of the subchain edge
chain.

Figure 1 shows a gadget chain of the ACC(Apache
Common Collection) library. With the introduction of the
gadget core, the search for gadget chain can be simplified
to the edge chain(HashSet.readObject()->LazyMap.get()),
whitch saves a lot of costs.

3.2. Static Analysis
Static analysis is a technique for fast white-box testing.
Generally, it includes static tainted analyses and static
symbolic execution. Static analysis techniques are com-
monly used in method call chain searches[17]. The sym-
bolic execution algorithm used by Gadget Inspector[12]
is good enough, and we rely on it for our work.

Our static analysis is divided into the following steps:

1. Obtain the class information and method infor-
mation of the target program.

2. Generate call graph by symbolic execution.
3. Search all the edge chain.

In the first stage, all the class information, method
information, and inheritance relationships of the target
class will be obtained. This work will be implemented by
ASM library[18], an excellent Java byte stream manipu-
lation tool.

After that, we use the symbolic execution of the Gadget
Inspector to obtain the call relationship for every method.
These call relationships make up the call graph. This call
graph is stored as a collection of <caller, callee array>.

In the last step, we want the search algorithm to dis-
cover all the edge chain. Figure 2 shows a typical call
graph with four gadget chains. Gadget Inspector can

only find two chains because it can only visit E and F
once.

Therefore, we propose a DFS(Depth First Search).
This DFS has two key parameters. One is the

MTV(maximum time of visits) per node, and the other
is the MCL(maximum chain length) in the search. The
MTV setting allows DFS to search as many gadget chains
as possible by visiting a node multiple times in a search.
MCL limits the search depth, preventing DFS from search-
ing too long and meaningless gadget chains. It backtracks
when loops are encountered, when chain lengths exceed
limits and when the visit times to a node exceed the limit.
The DFS keeps a temporary chain in the search, saves
the temporary chain to the result, and backtracks when
the search reaches the sink method (gadget core).

This strategy ensures we get as many results as possi-
ble without timeouts or memory overflows.

3.3. Dynamic Verification
In this work, we dynamically generate byte streams and
deserialize them to verify availability based on each gad-
get chain. Our work relies on the Java serialization
protocol[19] and the Java reflection[20].

3.3.1. Gadget Core Growth Method

Java reflection allows the program to load the Class ob-
ject based on a class name[20]. The Class object contains
the metadata of the class, including all the methods and
properties. This mechanism and the proposal of the gad-
get core led to the design of GCGM (Gadget Core Growth
Method).

The GCGM will generate an object for each edge chain
based on the static analysis results, which works as fol-
lows:

1. Get the manually constructed gadget core object
as current object according to the gadget chain,
which does not contain malicious behaviour.

2. Get the class name of the node above current
object in the gadget chain as clazz.

3. Use reflection to get the constructor of clazz.
4. Call the constructor of clazz with the current

object as an argument to construct a new object.
5. Set new object to current object.
6. Repeat steps 2-5.

The pseudocode for this method is shown in Algo-
rithm1:

3.3.2. Deserialization Verification

The GCGM allows us to generate objects dynamically
based on an edge chain. The ultimate goal of dynamic

QuASoQ 2022 - Preprint

9

.transform().transform()

private void readObject(java.io.ObjectInputStream s) {

……

for (int i=0; i<size; i++) {

E e = (E) s.readObject();

map.put(e, PRESENT);

}

}

private void readObject(java.io.ObjectInputStream s) {

……

for (int i=0; i<size; i++) {

E e = (E) s.readObject();

map.put(e, PRESENT);

}

}

static final int hash(Object key) {

 int h;

return (key == null) ? 0 : (h = key.hashCode()) ^ (h

>>> 16);

}

static final int hash(Object key) {

 int h;

return (key == null) ? 0 : (h = key.hashCode()) ^ (h

>>> 16);

}

public V getValue() {

return map.get(key);

}

public V getValue() {

return map.get(key);

}

public Process exec(String command) throws IOException {

return exec(command, null, null);

}

public Process exec(String command) throws IOException {

return exec(command, null, null);

}

.transform().transform()

inv

oke()

public Object get(Object key) {

 if (!super.map.containsKey(key)) {

 Object value = this.factory.transform(key);

 super.map.put(key, value);

 return value;

 } else {

 return super.map.get(key);

 }

}

Figure 1: A classic gadget chain in ACC. LazyMap.get() could be a gadget core.

Source

A B C

D

Sink

E F

Figure 2: A typical call graph.

verification is to determine whether the corresponding

byte stream of this object can trigger the sink method
during the deserialization process. We design a unique
verification method based on the serialization protocol
in this work. This work is based on the highly structured
nature of serialized byte stream.

Figure 3 shows the comparison of two serialized byte
streams. The left of the image shows the byte stream
corresponding to a gadget chain, and the right shows
the byte stream corresponding to the corresponding edge
chain. The difference is the byte stream corresponding to
the core chain. This allows us to modify the byte stream
to add incomplete edge chain to the gadget chain.

Figure 4 illustrates our workflow, which has the fol-
lowing steps.

1. Get the results of static analysis, preprocessing
each edge chain.

2. Pass the edge chain into GCGM as the parameter
to generate the corresponding edge object.

QuASoQ 2022 - Preprint

10

Algorithm 1 Gadget Core Growth Mehtod
Input: 𝑥0: an edge chain from static analysis; 𝐶𝑜𝑟𝑒: a core object of gadget chain parser, which contains information

about a gadget core.
Return: an object generated by GCGM;

1: set 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑂𝑏𝑗𝑒𝑐𝑡 = Core.getCoreObject(𝑥0);
2: set 𝐶𝑙𝑎𝑠𝑠𝐿𝑖𝑠𝑡 = Core.getClassList(𝑥0);
3: for 𝑖 = 0; 𝑖<𝐶𝑙𝑎𝑠𝑠𝐿𝑖𝑠𝑡.length();i++ do
4: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑙𝑎𝑠𝑠𝑁𝑎𝑚𝑒 = 𝐶𝑙𝑎𝑠𝑠𝐿𝑖𝑠𝑡[𝑖];
5: 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 = 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛.getConstrctor(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑙𝑎𝑠𝑠𝑁𝑎𝑚𝑒);
6: 𝐹𝑖𝑒𝑙𝑑𝑠 = 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛.getFilds(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑙𝑎𝑠𝑠𝑁𝑎𝑚𝑒);
7: 𝑇𝑦𝑝𝑒𝑠 = Reflection.getClass(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑂𝑏𝑗𝑒𝑐𝑡) + Reflection.getInterface(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑂𝑏𝑗𝑒𝑐𝑡)
8: for 𝐹𝑖𝑒𝑙𝑑 in 𝐹𝑖𝑙𝑑𝑠 do
9: for 𝑇𝑦𝑝𝑒 in 𝑇𝑦𝑝𝑒𝑠 do

10: if 𝐹𝑖𝑙𝑒𝑑=𝑇𝑦𝑝𝑒 then
11: 𝑁𝑒𝑤𝑂𝑏𝑗𝑒𝑐𝑡 = 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟.newInstance();
12: set 𝑁𝑒𝑤𝑂𝑏𝑗𝑒𝑐𝑡.𝐹 𝑖𝑒𝑙𝑑 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑂𝑏𝑗𝑒𝑐𝑡;
13: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑂𝑏𝑗𝑒𝑐𝑡 = 𝑁𝑒𝑤𝑂𝑏𝑗𝑒𝑐𝑡;
14: end if
15: end for
16: end for
17: end forreturn 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑂𝑏𝑗𝑒𝑐𝑡;

2022/5/22 13:26:42 16 进制比较(H) 第 1 页
 模式: 全部

 左边文件: D:\Users\Redomichelan\Desktop\javadestestcode\lazy.hex
 右边文件: D:\Users\Redomichelan\Desktop\javadestestcode\lazyempty.hex
00000000 AC ED 00 05 73 72 00 11 6A 61 76 61 2E 75 74 69 6C 2E 48 61 73 68 4D 61 70 05 07 DA C1 C3 16 60 ¬í..sr..java.util.HashMap..ÚÁÃ.` = 00000000 AC ED 00 05 73 72 00 11 6A 61 76 61 2E 75 74 69 6C 2E 48 61 73 68 4D 61 70 05 07 DA C1 C3 16 60 ¬í..sr..java.util.HashMap..ÚÁÃ.`
00000020 D1 03 00 02 46 00 0A 6C 6F 61 64 46 61 63 74 6F 72 49 00 09 74 68 72 65 73 68 6F 6C 64 78 70 3F Ñ...F..loadFactorI..thresholdxp? 00000020 D1 03 00 02 46 00 0A 6C 6F 61 64 46 61 63 74 6F 72 49 00 09 74 68 72 65 73 68 6F 6C 64 78 70 3F Ñ...F..loadFactorI..thresholdxp?
00000040 40 00 00 00 00 00 0C 77 08 00 00 00 10 00 00 00 01 73 72 00 34 6F 72 67 2E 61 70 61 63 68 65 2E @......w.........sr.4org.apache. 00000040 40 00 00 00 00 00 0C 77 08 00 00 00 10 00 00 00 01 73 72 00 34 6F 72 67 2E 61 70 61 63 68 65 2E @......w.........sr.4org.apache.
00000060 63 6F 6D 6D 6F 6E 73 2E 63 6F 6C 6C 65 63 74 69 6F 6E 73 2E 6B 65 79 76 61 6C 75 65 2E 54 69 65 commons.collections.keyvalue.Tie 00000060 63 6F 6D 6D 6F 6E 73 2E 63 6F 6C 6C 65 63 74 69 6F 6E 73 2E 6B 65 79 76 61 6C 75 65 2E 54 69 65 commons.collections.keyvalue.Tie
00000080 64 4D 61 70 45 6E 74 72 79 8A AD D2 9B 39 C1 1F DB 02 00 02 4C 00 03 6B 65 79 74 00 12 4C 6A 61 dMapEntryŠ-Ò›9Á.Û...L..keyt..Lja 00000080 64 4D 61 70 45 6E 74 72 79 8A AD D2 9B 39 C1 1F DB 02 00 02 4C 00 03 6B 65 79 74 00 12 4C 6A 61 dMapEntryŠ-Ò›9Á.Û...L..keyt..Lja
000000A0 76 61 2F 6C 61 6E 67 2F 4F 62 6A 65 63 74 3B 4C 00 03 6D 61 70 74 00 0F 4C 6A 61 76 61 2F 75 74 va/lang/Object;L..mapt..Ljava/ut 000000A0 76 61 2F 6C 61 6E 67 2F 4F 62 6A 65 63 74 3B 4C 00 03 6D 61 70 74 00 0F 4C 6A 61 76 61 2F 75 74 va/lang/Object;L..mapt..Ljava/ut
000000C0 69 6C 2F 4D 61 70 3B 78 70 74 00 06 6B 65 79 6B 65 79 73 72 00 2A 6F 72 67 2E 61 70 61 63 68 65 il/Map;xpt..keykeysr.*org.apache 000000C0 69 6C 2F 4D 61 70 3B 78 70 74 00 06 6B 65 79 6B 65 79 73 72 00 2A 6F 72 67 2E 61 70 61 63 68 65 il/Map;xpt..keykeysr.*org.apache
000000E0 2E 63 6F 6D 6D 6F 6E 73 2E 63 6F 6C 6C 65 63 74 69 6F 6E 73 2E 6D 61 70 2E 4C 61 7A 79 4D 61 70 .commons.collections.map.LazyMap 000000E0 2E 63 6F 6D 6D 6F 6E 73 2E 63 6F 6C 6C 65 63 74 69 6F 6E 73 2E 6D 61 70 2E 4C 61 7A 79 4D 61 70 .commons.collections.map.LazyMap
00000100 6E E5 94 82 9E 79 10 94 03 00 01 4C 00 07 66 61 63 74 6F 72 79 74 00 2C 4C 6F 72 67 2F 61 70 61 nå”‚žy.”...L..factoryt.,Lorg/apa 00000100 6E E5 94 82 9E 79 10 94 03 00 01 4C 00 07 66 61 63 74 6F 72 79 74 00 2C 4C 6F 72 67 2F 61 70 61 nå”‚žy.”...L..factoryt.,Lorg/apa
00000120 63 68 65 2F 63 6F 6D 6D 6F 6E 73 2F 63 6F 6C 6C 65 63 74 69 6F 6E 73 2F 54 72 61 6E 73 66 6F 72 che/commons/collections/Transfor 00000120 63 68 65 2F 63 6F 6D 6D 6F 6E 73 2F 63 6F 6C 6C 65 63 74 69 6F 6E 73 2F 54 72 61 6E 73 66 6F 72 che/commons/collections/Transfor
00000140 6D 65 72 3B 78 70 73 72 00 3A 6F 72 67 2E 61 70 61 63 68 65 2E 63 6F 6D 6D 6F 6E 73 2E 63 6F 6C mer;xpsr.:org.apache.commons.col 00000140 6D 65 72 3B 78 70 73 72 00 3A 6F 72 67 2E 61 70 61 63 68 65 2E 63 6F 6D 6D 6F 6E 73 2E 63 6F 6C mer;xpsr.:org.apache.commons.col
00000160 6C 65 63 74 69 6F 6E 73 2E 66 75 6E 63 74 6F 72 73 2E 43 68 61 69 6E 65 64 54 72 61 6E 73 66 6F lections.functors.ChainedTransfo 00000160 6C 65 63 74 69 6F 6E 73 2E 66 75 6E 63 74 6F 72 73 2E 43 68 61 69 6E 65 64 54 72 61 6E 73 66 6F lections.functors.ChainedTransfo
00000180 72 6D 65 72 30 C7 97 EC 28 7A 97 04 02 00 01 5B 00 0D 69 54 72 61 6E 73 66 6F 72 6D 65 72 73 74 rmer0Ç—ì(z—....[..iTransformerst 00000180 72 6D 65 72 30 C7 97 EC 28 7A 97 04 02 00 01 5B 00 0D 69 54 72 61 6E 73 66 6F 72 6D 65 72 73 74 rmer0Ç—ì(z—....[..iTransformerst
000001A0 00 2D 5B 4C 6F 72 67 2F 61 70 61 63 68 65 2F 63 6F 6D 6D 6F 6E 73 2F 63 6F 6C 6C 65 63 74 69 6F .-[Lorg/apache/commons/collectio 000001A0 00 2D 5B 4C 6F 72 67 2F 61 70 61 63 68 65 2F 63 6F 6D 6D 6F 6E 73 2F 63 6F 6C 6C 65 63 74 69 6F .-[Lorg/apache/commons/collectio
000001C0 6E 73 2F 54 72 61 6E 73 66 6F 72 6D 65 72 3B 78 70 75 72 00 2D 5B 4C 6F 72 67 2E 61 70 61 63 68 ns/Transformer;xpur.-[Lorg.apach 000001C0 6E 73 2F 54 72 61 6E 73 66 6F 72 6D 65 72 3B 78 70 75 72 00 2D 5B 4C 6F 72 67 2E 61 70 61 63 68 ns/Transformer;xpur.-[Lorg.apach
000001E0 65 2E 63 6F 6D 6D 6F 6E 73 2E 63 6F 6C 6C 65 63 74 69 6F 6E 73 2E 54 72 61 6E 73 66 6F 72 6D 65 e.commons.collections.Transforme 000001E0 65 2E 63 6F 6D 6D 6F 6E 73 2E 63 6F 6C 6C 65 63 74 69 6F 6E 73 2E 54 72 61 6E 73 66 6F 72 6D 65 e.commons.collections.Transforme
00000200 72 3B BD 56 2A F1 D8 34 18 99 02 00 00 78 70 00 00 00 05 73 72 00 3B 6F 72 67 2E 61 70 61 63 68 r;½V*ñØ4.™...xp....sr.;org.apach <> 00000200 72 3B BD 56 2A F1 D8 34 18 99 02 00 00 78 70 00 00 00 01 73 72 00 3B 6F 72 67 2E 61 70 61 63 68 r;½V*ñØ4.™...xp....sr.;org.apach
00000220 65 2E 63 6F 6D 6D 6F 6E 73 2E 63 6F 6C 6C 65 63 74 69 6F 6E 73 2E 66 75 6E 63 74 6F 72 73 2E 43 e.commons.collections.functors.C = 00000220 65 2E 63 6F 6D 6D 6F 6E 73 2E 63 6F 6C 6C 65 63 74 69 6F 6E 73 2E 66 75 6E 63 74 6F 72 73 2E 43 e.commons.collections.functors.C
00000240 6F 6E 73 74 61 6E 74 54 72 61 6E 73 66 6F 72 6D 65 72 58 76 90 11 41 02 B1 94 02 00 01 4C 00 09 onstantTransformerXv..A.±”...L.. 00000240 6F 6E 73 74 61 6E 74 54 72 61 6E 73 66 6F 72 6D 65 72 58 76 90 11 41 02 B1 94 02 00 01 4C 00 09 onstantTransformerXv..A.±”...L..
00000260 69 43 6F 6E 73 74 61 6E 74 71 00 7E 00 03 78 70 76 72 00 11 6A 61 76 61 2E 6C 61 6E 67 2E 52 75 iConstantq.~..xpvr..java.lang.Ru <> 00000260 69 43 6F 6E 73 74 61 6E 74 71 00 7E 00 03 78 70 iConstantq.~..xp
00000280 6E 74 69 6D 65 00 00 00 00 00 00 00 00 00 00 00 78 70 73 72 00 3A 6F 72 67 2E 61 70 61 63 68 65 ntime...........xpsr.:org.apache
000002A0 2E 63 6F 6D 6D 6F 6E 73 2E 63 6F 6C 6C 65 63 74 69 6F 6E 73 2E 66 75 6E 63 74 6F 72 73 2E 49 6E .commons.collections.functors.In
000002C0 76 6F 6B 65 72 54 72 61 6E 73 66 6F 72 6D 65 72 87 E8 FF 6B 7B 7C CE 38 02 00 03 5B 00 05 69 41 vokerTransformer‡èÿk{|Î8...[..iA
000002E0 72 67 73 74 00 13 5B 4C 6A 61 76 61 2F 6C 61 6E 67 2F 4F 62 6A 65 63 74 3B 4C 00 0B 69 4D 65 74 rgst..[Ljava/lang/Object;L..iMet
00000300 68 6F 64 4E 61 6D 65 74 00 12 4C 6A 61 76 61 2F 6C 61 6E 67 2F 53 74 72 69 6E 67 3B 5B 00 0B 69 hodNamet..Ljava/lang/String;[..i
00000320 50 61 72 61 6D 54 79 70 65 73 74 00 12 5B 4C 6A 61 76 61 2F 6C 61 6E 67 2F 43 6C 61 73 73 3B 78 ParamTypest..[Ljava/lang/Class;x
00000340 70 75 72 00 13 5B 4C 6A 61 76 61 2E 6C 61 6E 67 2E 4F 62 6A 65 63 74 3B 90 CE 58 9F 10 73 29 6C pur..[Ljava.lang.Object;.ÎXŸ.s)l
00000360 02 00 00 78 70 00 00 00 02 74 00 0A 67 65 74 52 75 6E 74 69 6D 65 75 72 00 12 5B 4C 6A 61 76 61 ...xp....t..getRuntimeur..[Ljava
00000380 2E 6C 61 6E 67 2E 43 6C 61 73 73 3B AB 16 D7 AE CB CD 5A 99 02 00 00 78 70 00 00 00 00 74 00 09 .lang.Class;«.×®ËÍZ™...xp....t..
000003A0 67 65 74 4D 65 74 68 6F 64 75 71 00 7E 00 1B 00 00 00 02 76 72 00 10 6A 61 76 61 2E 6C 61 6E 67 getMethoduq.~......vr..java.lang
000003C0 2E 53 74 72 69 6E 67 A0 F0 A4 38 7A 3B B3 42 02 00 00 78 70 76 71 00 7E 00 1B 73 71 00 7E 00 13 .String ð¤8z;³B...xpvq.~..sq.~..
000003E0 75 71 00 7E 00 18 00 00 00 02 70 75 71 00 7E 00 18 00 00 00 00 74 00 06 69 6E 76 6F 6B 65 75 71 uq.~......puq.~......t..invokeuq
00000400 00 7E 00 1B 00 00 00 02 76 72 00 10 6A 61 76 61 2E 6C 61 6E 67 2E 4F 62 6A 65 63 74 00 00 00 00 .~......vr..java.lang.Object....
00000420 00 00 00 00 00 00 00 78 70 76 71 00 7E 00 18 73 71 00 7E 00 13 75 72 00 13 5B 4C 6A 61 76 61 2E xpvq.~..sq.~..ur..[Ljava.
00000440 6C 61 6E 67 2E 53 74 72 69 6E 67 3B AD D2 56 E7 E9 1D 7B 47 02 00 00 78 70 00 00 00 01 74 00 04 lang.String;-ÒVçé.{G...xp....t..
00000460 63 61 6C 63 74 00 04 65 78 65 63 75 71 00 7E 00 1B 00 00 00 01 71 00 7E 00 20 73 71 00 7E 00 0F calct..execuq.~......q.~. sq.~..
00000480 73 72 00 11 6A 61 76 61 2E 6C 61 6E 67 2E 49 6E 74 65 67 65 72 12 E2 A0 A4 F7 81 87 38 02 00 01 sr..java.lang.Integer.â ¤÷.‡8... = 00000270 73 72 00 11 6A 61 76 61 2E 6C 61 6E 67 2E 49 6E 74 65 67 65 72 12 E2 A0 A4 F7 81 87 38 02 00 01 sr..java.lang.Integer.â ¤÷.‡8...
000004A0 49 00 05 76 61 6C 75 65 78 72 00 10 6A 61 76 61 2E 6C 61 6E 67 2E 4E 75 6D 62 65 72 86 AC 95 1D I..valuexr..java.lang.Number†¬•. 00000290 49 00 05 76 61 6C 75 65 78 72 00 10 6A 61 76 61 2E 6C 61 6E 67 2E 4E 75 6D 62 65 72 86 AC 95 1D I..valuexr..java.lang.Number†¬•.
000004C0 0B 94 E0 8B 02 00 00 78 70 00 00 00 01 73 71 00 7E 00 00 3F 40 00 00 00 00 00 0C 77 08 00 00 00 .”à‹...xp....sq.~..?@......w.... 000002B0 0B 94 E0 8B 02 00 00 78 70 00 00 00 01 73 71 00 7E 00 00 3F 40 00 00 00 00 00 0C 77 08 00 00 00 .”à‹...xp....sq.~..?@......w....
000004E0 10 00 00 00 00 78 78 74 00 0A 76 61 6C 75 65 76 61 6C 75 65 78 xxt..valuevaluex 000002D0 10 00 00 00 00 78 78 74 00 0A 76 61 6C 75 65 76 61 6C 75 65 78 xxt..valuevaluex

Beyond Compare v4.1.3

Figure 3: A comparison between the serialized byte stream of two similar objects.

Illegal

command

Illegal

command

Core Object

Probe Object

Class List
Edge

Chain

Gadget

Core

Illegal

command

Edge Object

Serialize

Serialize

Byte Stream

DeserializeInject

Exception

Figure 4: The Process in Dynamic Validation.

3. Generate the probe object by passing the core
chain as an argument. This probe object contains

an illegal command that cannot be executed by
Runtime.exec().

4. Serialize the edge object and the probe object into
byte stream.

5. Inject the illegal command of the probe object
into the byte stream of the edge object by modify-
ing the byte stream.

6. The acquired byte stream is deserialized, the ille-
gal command will be triggered, and the detector
will catch a specific exception.

4. Evaluate
To evaluate the effectiveness of our method, we designed
feasibility, inefficiency, comparison, and versatility ex-

QuASoQ 2022 - Preprint

11

LazyMap

TiedMapEntr

y

ConcurrentSk

ipListMap

Flat3Map
ConcurrentH

ashMap

BadAttribute

ExpExceptio

n

HashtableFlat3Map EnumMap

Flat3Map

TreePath

Figure 5: A Growth Tree in ACC,including 7 gadget chains

periments.
Experimental Environment: The experiments were

implemented on an Intel(R) Core(TM) i3-10100 CPU @
3.60GHz with 16GB of RAM on Windows 10.21H1. Gad-
get Inspector(DFS) and Gadget Catcher were run in Java
8 (release JDK 8u302).

Experimental Setup: In the feasibility experiment,
we will execute the method in the test set and determine
the availability of the technique based on the results. In
the inefficiency experiment, we will observe the impact
of two critical parameters of the method on the efficiency
and results by modifying these two parameters. In the
comparison experiment, we will compare the discovery
of our tool with some other methods mentioned so far.
In the versatility experiment, we will make discoveries
on some other libraries.

Test Set: The following libraries will be used for the
test set in this section.

• Apache Commons Collections 3.1
• Commons Beanutils 1.92
• Apache Commons Collections4 4.0
• Jython Standalone 2.5.2.

4.1. Results and Discussion
Feasibility Experiment: LazyMap will be set as a gad-
get core in ACC. With default settings, a total of 52 gad-
get chains were discovered. Our results not only hit all
three chains in ysoserial that are suitable for the JDK ver-
sion of CommonsCollections5, CommonsCollections6, and
CommonsCollections7 but also found many other gad-
get chains, which fully verified the correctness of our
strategy. A growth tree is made with some discovered
results in Figure 5, the root node is the gadget core, and
the page node is the outer class capable of triggering the
readObject() methods.

Efficiency Experiment: In this experiment, we verify
MTV(the maximum times of visits to a node) to optimize
default settings.

Table 1
The Result of Efficiency Evaluation Experiment

MTV
Static Analysis Dynamic Verification

Time Cost(s) Result Time Cost(s) Result
50000 862 365724 3673 52
10000 386 74844 125 28
5000 183 37626 58 24
1000 87 7567 8 13
500 51 3816 <1 11
Null > 3d / / /

Table 2
The Result of Camparion Experiment

Discovery Strategy Results Valid Results Time Cost(min)

Gadget Inspector 4 0 <2
Hybrid Analysis 1 1 <20
Composite Discover 52 52 >60

Table 1 shows the results of the efficiency experiments.
This result shows that the number of experimental results
and the time cost are positively related to MTV. At an
MTV of 50,000, it is possible to obtain over 360,000 results
in static analysis and 52 gadget chains after dynamic
calibration, when the time spent is about 1 hour. The
rule that can be summarized is that when MTV is set
more significant, more results can be obtained, but the
time overhead is also more; when MTV is infinite, the
results cannot be obtained in the expected time.

Comparison Experiment:
In this experiment, we use the ACC library as the test

set. Table 2 shows the three strategies’ search results and
the valid results, Where the results of Gadget Inspector
are from our experiments. The experimental results of
the hybrid analysis strategy are from the original article.
It shows the effectiveness of our discovery strategy over
the other two discovery strategies.

In addition, we also performed a simple runtime com-
parison. Gadget Inspector, a static analysis tool, was able
to produce results in two minutes, the hybrid analysis
approach was able to get results in 19 minutes, while our
method took more than 1h when the MTV was set to
50,000.

Versatility Experiments: We are also trying to use
our strategy for gadget chain discovery for some other
libraries. In this experiment, we found a new gadget
chain in ACC4 by combining the static analysis results
shown in Figure 6. This new gadget chain is not currently
included in ysesorial and can be judged as a new gadget
chain. In addition, the TransformingComparator() method
in this gadget chain can be used as a new gadget core to
implement the discovery of other types of gadget chains.
In our experiments, we initially verified the feasibility

QuASoQ 2022 - Preprint

12

public V get(Object key) {

 Entry<K,V> p = getEntry(key);

 return (p==null ? null : p.value);

}

final Entry<K,V> getEntry(Object key) {

 if (comparator != null)

 return getEntryUsingComparator(key);

 …

}

final Entry<K,V> getEntryUsingComparator(Object key) {

 @SuppressWarnings("unchecked")

 K k = (K) key;

 Comparator<? super K> cpr = comparator;

 if (cpr != null) {

 Entry<K,V> p = root;

 while (p != null) {

 int cmp = cpr.compare(k, p.key);

 …

}

public V get(Object key) {

 Entry<K,V> p = getEntry(key);

 return (p==null ? null : p.value);

}

final Entry<K,V> getEntry(Object key) {

 if (comparator != null)

 return getEntryUsingComparator(key);

 …

}

final Entry<K,V> getEntryUsingComparator(Object key) {

 @SuppressWarnings("unchecked")

 K k = (K) key;

 Comparator<? super K> cpr = comparator;

 if (cpr != null) {

 Entry<K,V> p = root;

 while (p != null) {

 int cmp = cpr.compare(k, p.key);

 …

}

.

transform()

public int compare(final I obj1, final I obj2) {

 final O value1 = this.transformer.transform(obj1);

 final O value2 = this.transformer.transform(obj2);

 return this.decorated.compare(value1, value2);

}

Figure 6: A new gadget chain with a new path to trigger gadget core.

Table 3
General experiments

library release gadget core

commons-beanutils 1.9.2 BeanComparator
commons-collections4 4.0 TransformingComparator
jython-standalone 2.5.2 Comparator

experiments of the three libraries in Table 3 and proved
that this gadget core could be applied to discover gadget
chains.

5. Conclusion
Based on the previous work, we have completed our anal-
ysis strategy. This strategy overcomes the common false
positives and negatives in gadget chain discovery. The
experimental results also prove the correctness and effi-
ciency of our design. We also have a massive advantage
in comparing with other strategies.

On the other hand, this strategy also has limitations
that rely on manual analysis. Finding a suitable gadget
core and building its validation strategy is necessary be-
fore analyzing a new library.

References
[1] T. Greanier, Discover the secrets of

the java serialization api, 2021. URL:
https://www.oracle.com/technical-resources
/articles/java/serializationapi.html.

[2] Docs.Oracle.com, Trail: Rmi (the java™ tutorials),
2020. URL: https://docs.oracle.com/javase/tutorial/
rmi/.

[3] Docs.Oracle.com, Objectinputstream (java platform
se 7), 2011. URL: https://docs.oracle.com/javase/7/
docs/api/java/io/ObjectInputStream.html.

[4] M. Daconta, When runtime.exec() won’t, 2000. URL:
https://www.ikkisoft.com/stuff/Defending_agains

t_Java_Deserialization_Vulnerabilities.pdf.
[5] J. Forshaw, Are you my type?, 2012. URL:

https://media.blackhat.com/bh-us-12/Briefings/F
orshaw/BH_US_12_Forshaw_Are_You_My_Typ
e_WP.pdf.

[6] B. Stephen, What do weblogic, websphere, jboss,
jenkins, opennms, and your application have in
common? this vulnerability., 2015. URL: https://fo
xglovesecurity.com/2015/11/06/what-do-weblogi
c-websphere-jboss-jenkins-opennms-and-your-a
pplication-have-in-common-this-vulnerability.

[7] C. D. 2021, Cve-2021-36981(vulnerability in sernet

QuASoQ 2022 - Preprint

13

https://www.oracle.com/technical-resources/articles/java/serializationapi.html
https://www.oracle.com/technical-resources/articles/java/serializationapi.html
https://www.oracle.com/technical-resources/articles/java/serializationapi.html
https://docs.oracle.com/javase/tutorial/rmi/
https://docs.oracle.com/javase/tutorial/rmi/
https://docs.oracle.com/javase/7/docs/api/java/io/ObjectInputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/ObjectInputStream.html
https://www.ikkisoft.com/stuff/Defending_against_Java_Deserialization_Vulnerabilities.pdf
https://www.ikkisoft.com/stuff/Defending_against_Java_Deserialization_Vulnerabilities.pdf
https://media.blackhat.com/bh-us-12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type_WP.pdf
https://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in-common-this-vulnerability
https://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in-common-this-vulnerability
https://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in-common-this-vulnerability
https://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in-common-this-vulnerability

verinice 1.22.2), 2021. URL: http://cve.mitre.org/cg
i-bin/cvename.cgi?name=CVE-2021-36981.

[8] C. D. 2021, Cve-2021-35464(vulnerability in forge-
rock am server 7.0), 2021. URL: http://cve.mitre.or
g/cgi-bin/cvename.cgi?name=CVE-2021-3546.

[9] L. Carettoni, Defending against java de-
serialization vulnerabilities, 2016. URL:
https://www.ikkisoft.com/stuff/Defending_
against_Java_Deserialization_Vulnerabilities.pdf.

[10] S. Cristalli, E. Vignati, D. Bruschi, A. Lanzi, Trusted
execution path for protecting java applications
against deserialization of untrusted data, in: In-
ternational Symposium on Research in Attacks, In-
trusions, and Defenses, Springer, 2018, pp. 445–464.

[11] N. Koutroumpouchos, G. Lavdanis, E. Veroni,
C. Ntantogian, C. Xenakis, Objectmap: Detecting
insecure object deserialization, in: Proceedings of
the 23rd Pan-Hellenic Conference on Informatics,
2019, pp. 67–72.

[12] I. Haken, Automated discovery of deserialization
gadget chains, Proceedings of the Black Hat USA
(2018).

[13] S. Rasheed, J. Dietrich, A hybrid analysis to detect
java serialisation vulnerabilities, in: Proceedings
of the 35th IEEE/ACM International Conference on
Automated Software Engineering, 2020, pp. 1209–
1213.

[14] C. Frohoff, G. Lawrence, ysoserial (a proof-of-
concept tool for generating payloads that exploit
unsafe java object deserialization.), 2015. URL:
https://github.com/frohoff/ysoserial.

[15] M. Bechler, marshalsec, 2017. URL: https://github
.com/mbechler/marshalsec.

[16] F. Dotta, Reliable discovery and exploitation of
java deserialization vulnerabilities, 2017. URL:
https://techblog.mediaservice.net/2017/05/reliable
-discovery-and-exploitation-of-java-deserializati
on-vulnerabilities.

[17] Y. Li, T. Tan, Y. Zhang, J. Xue, Program tailor-
ing: Slicing by sequential criteria, in: 30th Euro-
pean Conference on Object-Oriented Programming
(ECOOP 2016), Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2016.

[18] E. Bruneton, R. Lenglet, T. Coupaye, Asm: a code
manipulation tool to implement adaptable systems,
Adaptable and extensible component systems 30
(2002).

[19] Docs.oracle.com, Java serialization protocol, 2014.
URL: https://docs.oracle.com/javase/8/docs/platfor
m/serialization/spec/protocol.html.

[20] Docs.oracle.com, Java reflection api, 2014. URL:
https://docs.oracle.com/javase/8/docs/technotes/g

uides/reflection/index.html.

QuASoQ 2022 - Preprint

14

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-36981
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-36981
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3546
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3546
https://www.ikkisoft.com/stuff/Defending_against_Java_Deserialization_Vulnerabilities.pdf
https://www.ikkisoft.com/stuff/Defending_against_Java_Deserialization_Vulnerabilities.pdf
https://www.ikkisoft.com/stuff/Defending_against_Java_Deserialization_Vulnerabilities.pdf
https://github.com/frohoff/ysoserial
https://github.com/frohoff/ysoserial
https://github.com/mbechler/marshalsec
https://github.com/mbechler/marshalsec
https://techblog.mediaservice.net/2017/05/reliable-discovery-and-exploitation-of-java-deserialization-vulnerabilities
https://techblog.mediaservice.net/2017/05/reliable-discovery-and-exploitation-of-java-deserialization-vulnerabilities
https://techblog.mediaservice.net/2017/05/reliable-discovery-and-exploitation-of-java-deserialization-vulnerabilities
https://techblog.mediaservice.net/2017/05/reliable-discovery-and-exploitation-of-java-deserialization-vulnerabilities
https://docs.oracle.com/javase/8/docs/platform/serialization/spec/protocol.html
https://docs.oracle.com/javase/8/docs/platform/serialization/spec/protocol.html
https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/index.html

Exploring the Impact of Code Style in Identifying Good
Programmers
Rafed Muhammad Yasir1, Dr. Ahmedul Kabir1

1Institute of Information Technology (IIT), University of Dhaka, Dhaka, Bangladesh

Abstract
Code style is an aesthetic choice exhibited in source code that reflects programmers’ individual coding habits. This study
is the first to investigate whether code style can be used as an indicator to identify good programmers. Data from Google
Code Jam was chosen for conducting the study. A cluster analysis was performed to find whether a particular coding style
could be associated with good programmers. Furthermore, supervised machine learning models were trained using stylistic
features and evaluated using recall, macro-F1, AUC-ROC and balanced accuracy to predict good programmers. The results
demonstrate that good programmers may be identified using supervised machine learning models, despite that no particular
style groups could be attributed as a good style.

Keywords
code style, identify good programmer, stylistic features

1. Introduction
Code style represents the physical layout of code (e.g.,
indentation, bracket placement), which reflects an indi-
vidual’s personal programming habits that do not affect
its functionality [1]. Figure 1 shows two code snippets
that are functionally similar but written in two different
styles. Code style has an impact on various aspects of
software engineering, including software maintenance
[2] and speed of software development [3]. However, no
prior studies have been conducted to see whether good
programmers can be detected by looking at their coding
style. This paper investigates the potential for using code
style to identify good programmers.

(a) Style 1 (b) Style 2

Figure 1: Two functionally same code snippets written in
different styles

Establishing a link between code style and good pro-
grammers can have several implications. Many software
repositories contain style guidelines that are used to en-
force a specific code style in order to maintain software
quality [4]. However, these style guides are often opinion-

QuASoQ‘22: 10th International Workshop on Quantitative Approaches
to Software Quality, December 06, 2022, virtual
$ bsse0733@iit.du.ac.bd (R. M. Yasir); kabir@iit.du.ac.bd
(Dr. A. Kabir)
� https://rafed.github.io/ (R. M. Yasir)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

ated and arbitrary [5, 6]. If a specific code style exhibited
by programmers can be identified as a good style, it can
be used to create non-arbitrary style guidelines for better
software maintenance.

In the software industry, the developers hired by a
company directly affect the quality of the codebase that
they maintain. During recruitment, the candidates who
apply for jobs often have to solve a set of programming
problems. However, existing hiring practices do not ac-
count for the possibility that a skilled programmer could
have a bad day and fail to answer a question correctly.
Thus, in some circumstances a judgment may be unfair. If
positive stylistic features can be identified in a program-
mer’s code, they can be used as an additional criterion to
enhance recruitment processes. This study is an initial at-
tempt to determine whether such relationships between
competent programmers and their code style can be es-
tablished.

To conduct the study, the solutions collected from
Google Code Jam (GCJ) [7] were used as the dataset.
30 stylistic metrics were extracted from the codes and
used as features for analysis. Two methods of analysis
were used. At first, clustering algorithms were applied to
the data to discover style groups and check whether good
programmers belonged to a particular style group. Sec-
ondly, supervised machine learning models were trained
using stylistic features to predict good programmers. The
models were evaluated using recall, macro-F1, area under
curve of ROC (AUC-ROC), and balanced accuracy.

Results show that, although style groupings were
found, there were no specific groups with which good
programmers could be associated. However, supervised
machine learning models showed that good programmers
can be predicted to some extent. Based on the evaluated
metrics, a Balanced Random Forest achieved the best re-

QuASoQ 2022 - Preprint

15

mailto:bsse0733@iit.du.ac.bd
mailto:kabir@iit.du.ac.bd
https://rafed.github.io/
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

sult with an average of 0.65 recall, 0.51 macro-F1, and
0.69 AUC-ROC.

2. Related Work
To the best of our knowledge, this is the first time code
style has been used to identify good programmers. Early
research conducted by Oman and Cook proposed a taxon-
omy for code styles to help people grasp a coherent view
on the basis and application of code styles [8]. The four
major categories of their taxonomy are general practices,
typographic style, control structure style and information
structure style. They also concluded in further research
that code style is more than cosmetic and that it can affect
areas such as code comprehension [9].

Caliskan et al. proposed a Code Stylometry Feature
Set (CSFS) with which they performed source code au-
thorship attribution [10]. Their feature set is language
agnostic and can be used for other programming lan-
guages as well. With their method, they achieved 94%
accuracy in classifying 1600 authors and 98% accuracy in
classifying 250 authors. They concluded that this method
can help in the identification of authors of malicious pro-
grams, ghostwriting detection, software forensics and
copyright investigation.

Mirza and Cosma explored the suitability of using code
style in detecting plagiarism in the BlackBox dataset [11].
BlackBox is a project that collects data from users of the
BlueJ which is a Java IDE [11]. Their study showed that
code style is suitable for detecting plagiarism.

For evaluating software projects, Zou et al. explored
how code style inconsistency can affect pull request in-
tegration in projects on Github [3]. By analyzing 117
public repositories, they concluded that code styles with
specific criteria can influence both the acceptance of pull
requests and the time required to merge a pull request.

Mi and Yu conducted a study on stylistic inconsistency
in software projects [2]. They proposed a collection of
stylistic metrics for C++ projects and used these met-
rics to analyze small-scale Github projects. By using
hierarchical agglomerative clustering they showed that
stylistic differences exist between source files in a project.
They concluded that, using the degree of stylistic incon-
sistency as a basis, code comprehensibility and software
maintainability could be improved in the future.

Several tools have been developed that can check stylis-
tic inconsistencies and help programmers improve code
style. Ala-Mutka et al. developed style++ that helps stu-
dents learn good C++ programming conventions [12].
Mäkelä et al. developed Japroach that checks whether
Java programs have a particular style and if style related
issues exist in them [13]. Ogura et al. developed style-
coordinator to decrease inconsistency and improve code
readability [1].

Table 1
Number of Participants in a Round

2015 2016 2017
Qualification round 10744 11401 11342
Round 2 1650 1641 1824
Round 3 266 296 286
World Finals 22 20 21

3. Methodology

3.1. Dataset Description
The dataset for the study was made up of the solutions
gathered from the Google Code Jam (GCJ) website [7].
GCJ is an annual programming contest held by Google.
GCJ is selected because its data is publicly available
and it can somewhat resemble programming exams in
recruitment processes. Professional programmers, stu-
dents and amateurs from all around the world participate
in GCJ. Therefore, not only does the dataset consist of
source code from varying sources, but they also solve the
same problem which makes comparative study possible.
The contest consists of seven rounds, each progressively
harder than the previous. The rounds are: Qualification
round, Round 1A, Round 1B, Round 1C, Round 2, Round
3 and World Finals. We consider the programmers who
reached at least Round 3 as "good" programmers because
participating in this round requires passing the previous
rounds with a large number of accepted solutions.

Although GCJ accepts solutions in many programming
languages, C++ was selected as the preferred language
for evaluation as it is more prevalent among participants
and has the highest number of submissions. Each prob-
lem of the contest has two validation sets: a small input
set and a large input set. A solution for the large vali-
dation set is a valid solution for the small input set, but
not vice versa. For our analysis, the solutions from the
small input were taken as it had more submissions and it
would also be redundant if both solutions were taken. A
small number of solutions were rejected as the language
encoding consisted of non-standard characters.

The solutions to the contests held in 2015, 2016, and
2017 are chosen for experimentation. However, we only
include solutions from Qualification Round, Round 2 and
Round 3 for our dataset. Round 1A, Round 1B, and Round
1C are excluded because participating in these rounds
are optional and thus lacks submissions from all pro-
grammers. Solutions from the World Finals are excluded
because the number of finalists is too small to take into
consideration for analysis. Table 1 shows the number of
participants in each round of the contests.

From the collected data, layout and lexical stylistic
features were extracted based on [10]. Abstract syntax
tree based features were omitted as these features are

QuASoQ 2022 - Preprint

16

Table 2
Feature Description of Dataset

Feature Definition
numTabs/length Number of tabs divided by file length in characters
numSpaces/length Number of space characters divided by file length in characters
numEmptyLines/length Number of empty lines divided by file length in characters
whiteSpaceRatio Ratio between the number of whitespace characters (spaces, tabs, and newlines) and

non-whitespace characters
newLineBeforeOpenBrace Ratio between the number of code blocks preceded by a newline character and not

preceded by a newline character
tabsLeadLines Ratio between the number of lines preceded by a tab and not preceded by a tab
avgLineLength Average length of each line
stdDevLineLength Standard deviation of the lengths of each line
numkeyword/length Number of occurrences of keyword divided by file length in characters, where keyword

is one of if, else, else-if, for, while, do, break, continue, switch, case (10 different features)
numTernary/length Number of ternary operators divided by file length in characters
numTokens/length Number of word tokens divided by file length in characters
numUniqueTokens/length Number of unique keywords used divided by file length in characters
numComments/length Number of comments divided by file length in characters
numLineComments/length Number of line comments divided by file length in characters
numBlockComments/length Number of comments divided by file length in characters
numLiterals/length Number of string, character, and numeric literals divided by file length in characters
numMacros/length Number of preprocessor directives divided by file length in characters
nestingDepth Highest depth of control statements and loops
numFunctions/length Number of functions divided by file length in characters
avgParams Average number of parameters of functions
stdDevNumParams Standard deviation of the number of parameters of functions

not within the control of a programmer. Furthermore,
term frequency based features were also excluded as they
largely depend on the corpus being used. Following these
criteria, 30 stylistic features were extracted. The features
are listed in Table 2.

3.2. Approach
This section discusses the setups for exploring the effects
of code style on classifying good programmers. Two
methods were used for this purpose: (1) clustering tech-
niques and (2) supervised machine learning algorithms.

3.2.1. Analyzing Using Clustering Techniques

Clustering is a method of partitioning objects into homo-
geneous groups on the basis of similarity among those
objects [14]. t-SNE is one such algorithm that can dis-
cover the potential number of clusters in a dataset with
high dimensions [15]. For each problem in the contests, t-
SNE graphs were plotted with the intent of finding groups
that conform to a particular style. Each data point in the
plots represents a solution submitted by a programmer.
The data points are labeled as:

• Red: reached World Finals
• Green: reached Round 3
• Light blue: other programmers

The plots provide an estimate for the number of clusters
and the distribution of good programmers in the clusters.

To further validate the clustering provided by t-SNE,
Hierarchical Agglomerative Clustering (HAC) with Ward
linkage was performed and dendrograms were plotted.
HAC is a clustering algorithm that treats every data point
as a cluster and they are gradually merged to form a
single cluster [16]. The number of clusters indicated
by the dendrograms was matched with the number of
clusters indicated by t-SNE before further analysis was
performed.

To analyze the properties of the t-SNE clusters, solu-
tions to each problem in the dataset were clustered using
K-Means With K=number of clusters estimated by t-SNE.
The solutions in the data were then labeled based on the
cluster they belonged to. This labeled data was fitted to
a Random Forest Classifier to obtain the feature impor-
tance of the tree. Based on the tree’s feature importance,
it was determined what style groups exist and whether
good programmers belong to a specific style group.

3.2.2. Analyzing using Supervised Machine
Learning Algorithms

Supervised learning is a method of training a model that
can make predictions based on labeled data [17]. For pre-
dicting good programmers, the following models were

QuASoQ 2022 - Preprint

17

trained: Logistic Regression (LR), Support Vector Clas-
sifier (SVC), K-Nearest Neighbors (KNN), Decision Tree
(DT) and Random Forest (RF). A Dummy classifier was
also trained to act as a performance baseline for com-
parison [18]. The models were trained for each problem
in the dataset. Table 1 shows that the number of par-
ticipants in Round 3 is far less than the participants in
the previous rounds. That is, the proportion of "good"
programmers in the dataset is much lower in comparison
to the other programmers. This makes the classification
an imbalanced classification problem [19]. To balance the
training data, the up-sampling technique SMOTE [20]
was used prior to training the above mentioned models.
Furthermore, Balanced Random Forest (BRF) and RUS
Adaboost classifier (RUSAda) were also trained which
performs under-sampling to balance training data [21].
For bias-free results, all trained models were K-fold cross-
validated.

4. Experimental Analysis

4.1. Performance Evaluation
The clusters created for analysis were evaluated empiri-
cally. Although the analyzed dataset had labels and the
results could be evaluated using a metric, this was not
done, as evaluating clustering algorithms using labels is
not recommended [22].

For the supervised algorithms recall, macro-F1 and
Area Under Curve of ROC (AUC-ROC) were used to eval-
uate the models. Recall is the measure of the fraction
of good programmers correctly identified as good pro-
grammers [23]. Recall is calculated as equation (1). F1
is an evaluation metric measured by combining preci-
sion and recall, and it is calculated as (3) [23]. Macro-F1
is the arithmetic mean of the per class F1 scores. It has
been selected as an evaluation criterion because the train-
ing data was imbalanced, and macro-F1 is a good metric
for imbalanced data [24]. AUC-ROC is the area under a
ROC curve that allows comparison between models [23].
Apart from these evaluation metrics, balanced accuracy
was also reported. Balanced accuracy is defined as the
average of recall obtained on each class [25].

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
(1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
(2)

𝐹1 =
2 * 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 *𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(3)

Table 3
Feature importance of Clusters

Features Importance
newLineBeforeOpenBrace 0.282
tabsLeadLines 0.163
numTabs/length 0.151
numSpaces/length 0.103

4.2. Results and Discussion
After analyzing the contest results from 2015, 2016, and
2017, it was discovered that they were similar. Therefore,
only the results of one year (2016) are shown in this
section.

Figure 2 shows the t-SNE clusters of all the problems
in the dataset of the year 2016. The caption of each im-
age shows the round and the problem number. From the
graphs, it can be said that 4 stylistic clusters exist for
each solution. The most important features of the clus-
ters determined by a Random Forest Classifier are shown
in Table 3. The importance of all other features was less
than 0.05. It is seen that newLineBeforeOpenBrace and
tabsLeadLines are the most prominent features in sepa-
rating the clusters. A manual inspection of the codes also
proved the findings to be true. The discovered clusters
are formed around the following feature combinations:

• new line before opening braces, tabs lead lines
• no new line before opening braces, tabs lead lines
• new line before opening braces, whitespace lead

lines
• no new line before opening braces, whitespace

lead lines

Although style clusters were found, the good program-
mers were almost equally distributed among them. As
a result, we cannot conclude that good programmers
belong to a specific cluster.

The results of the supervised machine learning models
are shown in Table 4. BRF, LR, SVC and RUSAda per-
formed better than the dummy model, which indicates
that some patterns can be identified by the models that
can be used to predict good programmers. Also, BRF
outperformed all models in terms of Recall, macro-F1
and AUC-ROC. While different studies have used code
style for various aspects such as author identification
and plagiarism detection, none of the studies have dealt
with good programmer identification. Therefore, we can-
not compare our results with those of existing studies.
However, our results can inspire further research on the
relationship between code style and the coding ability of
programmers.

QuASoQ 2022 - Preprint

18

(a) Qualification round -
565238

(b) Qualification round -
563469

(c) Qualification round -
563631

(d) Qualification round -
573860

(e) Round 2 - 567760 (f) Round 2 - 572360 (g) Round 2 - 571844 (h) Round 2 - 571860

(i) Round 3 - 574081 (j) Round 3 - 563236 (k) Round 3 - 563461 (l) Round 3 - 512508

Figure 2: t-SNE Style Clusters of GCJ 2016

Table 4
Prediction Results of Supervised Learning Models

Model Recall macro-
F1

AUC-
ROC

Balanced
Accuracy

BRF 0.650 0.511 0.695 0.645
LR 0.641 0.523 0.692 0.651
SVC 0.601 0.523 0.689 0.639
RUSAda 0.510 0.50 0.626 0.590
Dummy 0.485 0.412 0.499 0.489
KNN 0.469 0.494 0.593 0.565
DT 0.287 0.525 0.542 0.542
RF 0.185 0.539 0.664 0.537

5. Threats to Validity
This section presents aspects that may threaten the va-
lidity of the study:

• Internal validity: The result of our analysis
largely depends on the stylistic features that were
used. Using other stylistic features may affect the

results. However, many existing studies [10, 26]
have used these features for their analysis, so they
can be relied upon.

• External validity: The analysis was done on the
source files of the GCJ dataset. Therefore, the
findings of this study may not be generally appli-
cable to contests in other formats. Furthermore,
as only C++ codes were selected for analysis, it
cannot be said whether stylistic features of other
programming languages will show similar results.
Additionally, the criteria for defining a good pro-
grammer are subjective and could be defined in
other ways depending on the context. In such
contexts, our results can not be generalized.

To ensure the reliability of the study, the analysis re-
sults are made publicly available in Jupyter notebooks at
github.com/rafed/GcjStyleAnalysis.

QuASoQ 2022 - Preprint

19

https://github.com/rafed123/GcjStyleAnalysis

6. Conclusion
This paper explores whether code style can be used to
identify good programmers. The study was conducted
on C++ solutions from the Google Code Jam contest.
Clustering techniques such as t-SNE and hierarchical ag-
glomerative clustering were used to discover whether
style clusters exist and if good programmers could be
attributed to any of them. Although four style clusters
were found, good programmers could not be associated
with a particular cluster. However, supervised machine
learning showed that stylistic attributes can be used to
predict good programmers. Seven machine learning mod-
els were trained and evaluated using recall, macro-F1 and
AUC-ROC. A Balanced Random Forest yielded the best
results with 0.650 recall, 0.511 macro-F1 and 0.695 AUC-
ROC. The results indicate that code style can be used as
a measure to identify good programmers.

Future research will examine if defining style guide-
lines based on the coding style of skilled programmers
enhances the quality of software. Additionally, it is possi-
ble to investigate how the current recruitment procedures
might be efficiently linked with the prediction of good
programmers utilizing code style. There is also potential
for improving our results using other techniques.

References
[1] N. Ogura, S. Matsumoto, H. Hata, S. Kusumoto,

Bring your own coding style, in: 2018 IEEE 25th In-
ternational Conference on Software Analysis, Evo-
lution and Reengineering (SANER), IEEE, 2018, pp.
527–531.

[2] Q. Mi, J. Keung, Y. Yu, Measuring the stylistic in-
consistency in software projects using hierarchical
agglomerative clustering, in: Proceedings of the
The 12th International Conference on Predictive
Models and Data Analytics in Software Engineer-
ing, ACM, 2016, p. 5.

[3] W. Zou, J. Xuan, X. Xie, Z. Chen, B. Xu, How does
code style inconsistency affect pull request integra-
tion? an exploratory study on 117 github projects,
Empirical Software Engineering (2019) 1–33.

[4] T. Erkkinen, Model style guidelines for production
code generation, Technical Report, SAE Technical
Paper, 2005.

[5] Pullrequest.com, 2022. URL:
https://www.pullrequest.com/blog/
create-a-programming-style-guide/.

[6] Google style guides, 2022. URL: https://google.
github.io/styleguide/.

[7] Google, Past contests, google code jam, 2022. URL:
https://code.google.com/codejam/past-contests.

[8] P. W. Oman, C. R. Cook, A programming style

taxonomy, Journal of Systems and Software 15
(1991) 287–301.

[9] P. W. Oman, C. R. Cook, Typographic style is more
than cosmetic, Communications of the ACM 33
(1990) 506–520.

[10] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan,
C. Voss, F. Yamaguchi, R. Greenstadt, De-
anonymizing programmers via code stylometry, in:
24th {USENIX} Security Symposium ({USENIX}
Security 15), 2015, pp. 255–270.

[11] O. M. Mirza, M. Joy, G. Cosma, Style analysis for
source code plagiarism detection—an analysis of
a dataset of student coursework, in: 2017 IEEE
17th international conference on advanced learning
technologies (ICALT), IEEE, 2017, pp. 296–297.

[12] K. Ala-Mutka, T. Uimonen, H.-M. Jarvinen, Sup-
porting students in c++ programming courses with
automatic program style assessment, Journal of In-
formation Technology Education: Research 3 (2004)
245–262.

[13] S. Mäkelä, V. Leppänen, Japroch: A tool for check-
ing programming style, Kolin Kolistelut—Koli Call-
ing 2004 (2004) 151.

[14] S. C. Johnson, Hierarchical clustering schemes,
Psychometrika 32 (1967) 241–254.

[15] G. C. Linderman, S. Steinerberger, Clustering with
t-sne, provably, SIAM Journal on Mathematics of
Data Science 1 (2019) 313–332.

[16] K. Sasirekha, P. Baby, Agglomerative hierarchical
clustering algorithm-a, International Journal of
Scientific and Research Publications 83 (2013) 83.

[17] S. J. Russell, P. Norvig, Artificial intelligence: a mod-
ern approach, Malaysia; Pearson Education Limited„
2016.

[18] Scikit-learn, Dummy classsifier, 2022. URL:
https://scikit-learn.org/stable/modules/generated/
sklearn.dummy.DummyClassifier.html.

[19] N. Japkowicz, S. Stephen, The class imbalance prob-
lem: A systematic study, Intelligent data analysis 6
(2002) 429–449.

[20] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P.
Kegelmeyer, Smote: synthetic minority over-
sampling technique, Journal of artificial intelligence
research 16 (2002) 321–357.

[21] Imbalanced-learn, Ensembled methods, 2022.
URL: https://imbalanced-learn.readthedocs.io/en/
stable/api.html#module-imblearn.ensemble.

[22] I. Färber, S. Günnemann, H.-P. Kriegel, P. Kröger,
E. Müller, E. Schubert, T. Seidl, A. Zimek, On using
class-labels in evaluation of clusterings, in: Multi-
Clust: 1st international workshop on discovering,
summarizing and using multiple clusterings held
in conjunction with KDD, 2010, p. 1.

[23] D. M. Powers, Evaluation: from precision, recall
and f-measure to roc, informedness, markedness

QuASoQ 2022 - Preprint

20

https://www.pullrequest.com/blog/create-a-programming-style-guide/
https://www.pullrequest.com/blog/create-a-programming-style-guide/
https://google.github.io/styleguide/
https://google.github.io/styleguide/
https://code.google.com/codejam/past-contests
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
https://imbalanced-learn.readthedocs.io/en/stable/api.html#module-imblearn.ensemble
https://imbalanced-learn.readthedocs.io/en/stable/api.html#module-imblearn.ensemble

and correlation (2011).
[24] B. Wu, S. Lyu, B. Ghanem, Constrained submodular

minimization for missing labels and class imbalance
in multi-label learning, in: Thirtieth AAAI Confer-
ence on Artificial Intelligence, 2016.

[25] Balanced accuracy, 2022. URL: https:
//scikit-learn.org/stable/modules/generated/
sklearn.metrics.balanced_accuracy_score.html.

[26] M. Tereszkowski-Kaminski, S. Pastrana, J. Blasco,
G. Suarez-Tangil, et al., Towards improving code
stylometry analysis in underground forums, in:
Proceedings on Privacy Enhancing Technologies
(PETS), 2022.

QuASoQ 2022 - Preprint

21

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html

An Empirical Evaluation of Defect Prediction Models Using
Project-Specific Measures

Umamaheswara Sharma B1,*,†, Ravichandra Sadam2,†

1Research Scholar, Department of Computer Science and Engineering, National Institute of Technology, Warangal, Telangana, India
2Associate Professor, Department of Computer Science and Engineering, National Institute of Technology, Warangal, Telangana, India

Abstract
Due to the advantages of economizing the testing resources such as cost, time, and consequently the manpower on the
developing software project, research on software defect prediction (SDP) has gained traction in academia. Though many
works in the literature discuss constraints that are limiting the final prediction performance, finding the essential benefits
in terms of the project objectives such as cost, service time, and failure is rarely explored. On the basis of these project
objectives, the gap of finding the best performing SDP model is still present in the literature. In this regard, in this work,
a detailed empirical analysis of With-in Project Defect Prediction (WPDP), Cross-Project Defect Prediction (CPDP), and
mixed-Cross-Project Defect Prediction (M-CPDP) models is provided using the project-specific performance measures such as
percent of perfect cleans (PPC), percent of non-perfect cleans (PNPC), false omission rate (FOR), and its additional derived
performance measures, which are proposed by Sharma et al. in [1]. The empirical analysis is provided on 14 publicly
available datasets collected from the PROMISE repository using the baselines such as support vector machines (SVM), decision
trees (DT), and 𝑘-nearest neighbours (𝑘-NN) classifiers. From the empirical results, we observe that the M-CPDP model is
significantly better at providing maximum savings in the allocated budget, minimum service time, and minimum failure
incidents on the majority of the target projects.

Keywords
With-in Project Defect Prediction, Mixed Cross-Project Defect Prediction, Cross-Project Defect Prediction, project-specific
Performance Measures, Prediction Quality Assessment

1. Introduction
Software defect prediction (SDP) models reduce the work
load on the tester by providing the status of defect-
proneness of the newly developed software module in
a short time [2, 3, 4, 5, 6, 7, 8, 9, 10]. Hence, it re-
duces the total cost, time, and manpower that are spent
on the target project [11, 1]. Because of these advan-
tages, there are the works in the literature that ad-
dress various constraints in building prediction models
[2, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20].

The literature on SDP classifies works on its major cat-
egories such as within-project defect prediction (WPDP)
and cross-project defect prediction (CPDP). WPDP mod-
els use available local data from the same software to train
the prediction model, whereas CPDP models use defects
data collected from multiple projects to train the predic-
tion model[21]. The CPDP models are further classified
into many types, such as mixed CPDP (M-CPDP), mixed
project defect prediction (MPDP), and pair-wise-CPDP

QuASoQ 2022: 10th International Workshop on Quantitative Ap-
proaches to Software Quality, December 06, 2022, virtual
* Corresponding author
†

These authors contributed equally in this research.
$ uma.phd@student.nitw.ac.in (U. S. B); ravic@nitw.ac.in
(R. Sadam)
� 0000-0003-1676-3347 (U. S. B)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

[21]. In mixed CPDP, old versions of the same project
along with the data of the other source projects are used
to train the prediction model. Hence, the M-CPDP models
are considered as a mixture of with-in and cross-project
defect prediction contexts. In MPDP, the prediction is
trained using the data from the target project along with
the old versions of the same project and the data of the
other source projects. Whereas in the pair-wise CPDP,
the prediction models will be built using each project’s
data. Then, the mean or median of the performances of
these pair-wise predictions is then used to calculate the
final performance of the pair-wise CPDP model. Among
all the variants of SDP, most literature discusses works
on WPDP, CPDP, and M-CPDP [1, 10, 21] models.

The common objective of developing SDP models is
to reduce the project cost that is being spent on the test-
ing team, reduce the work load on the tester, and min-
imise the risk of observing the failures [1, 22]. Owing
to these objectives, recently, a work by Sharma et al. in
[1] discusses various novel project-specific performance
measures such as percent of perfect cleans (PPC), percent
of non-perfect cleans (PNPC), false-omission rate (FOR),
percent of saved budget (PSB), and percent of remaining
edits (PRE), to capture real-benefits from the prediction
model. These performance measures are essential in un-
derstanding the main objectives of the prediction model
but are also used to evaluate the developed prediction
model.

Further extending the work of Sharma et al. [1], in

QuASoQ 2022 - Preprint

22

mailto:uma.phd@student.nitw.ac.in
mailto:ravic@nitw.ac.in
https://orcid.org/0000-0003-1676-3347
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

this work, we provide an empirical analysis of the perfor-
mances of the widely used SDP variants such as WPDP,
CPDP, and M-CPDP models using the project-specific
performance measures. For the empirical analysis, we
have used benchmark classification approaches such as
support vector machines (SVM), decision trees (DT), and
𝑘-nearest neighbours (𝑘-NN), for each problem context.
From the empirical analysis, we observe that the M-CPDP
model is performing significantly better over the others
in terms of the project-specific attributes.

1.1. Contributions
Capturing the project benefits from the SDP model and
obtaining the best performing model is essential for any
research practitioner. Hence, this work is mainly targeted
at providing an empirical analysis of the SDP models such
as WPDP, CPDP, and M-CPDP with regard to the project-
specific performance measures such as percent of perfect
cleans (PPC), percent of non-perfect cleans (PNPC), false-
omission rate (FOR), percent of saved budget (PSB), and
percent of remaining edits (PRE), to capture real-benefits
from the best prediction model. Since interpreting the
obtained results of the SDP model in terms of the project
objectives is a necessary task, any research practitioner
should have to evaluate their models using the project-
specific measures as in [1]. To the best of our knowledge,
conducting an empirical analysis between the prediction
models such as WPDP, CPDP, and M-CPDP in order to
know the best performing model in terms of the SDP
objectives is new to this field of research.

Paper Organisation: The rest of the paper is organised
as follows: Section 2 discusses the related work on the
usage of the performance measures in SDP studies. In
Section 3, we provide a complete list of project-specific
performance measures, proposed by Sharma et al. in
[1]. Section 4 presents the essential requirements for
conducting empirical analysis such as utilised datasets,
significance test and base-line machine learning (ML)
models. In Section 5, we provide detailed empirical re-
sults in terms of the proposed measures and discuss the
important observations. Section 6 discusses potential
threats to the obtained prediction performance. Section
7 concludes the work and provides possible future work.

2. Related Work
In this section, we provide the papers that discuss the key
findings from the SDP models in terms of the traditional
measures. In this regard, we present the abstract details of
two relevant studies that discuss the suitable performance
measures for the SDP models. In addition, we also discuss
the project-specific performance measures in evaluating
the prediction models as suggested in [1].

Since model performance comparison received more
attention, in [23], Jiang et al. discussed various tradi-
tional performance measures were investigated to find
the most suitable candidate for the defect prediction tasks.
The study analyses the strengths and weaknesses of the
wide variety of numeric evaluation measures such as
overall accuracy, error rate, sensitivity, specificity, pre-
cision, G-mean, F-measure, J-coefficient, in addition to
the graphical summarisation measures such as receiver
operating characteristic (ROC) curve, precision and re-
call (PR) curve, cost curve, and lift chart. The empirical
study was conducted using five base-lines on the NASA
projects. Since optimising the cost that is being spent
on the project and maximising the efficiency of the soft-
ware verification are the main objectives in developing
SDP models, the task for the research practitioners is to
minimise the misclassification rate. In this regard, the
study [23] does not qualify any best traditional perfor-
mance measures (this is due to the fact that, in terms
of selective performance measures, rarely will one or
few models prove to be the best for all possible uses in
software quality assessment). However, they concluded
that the F-measure offers a balanced consideration of the
observed results.

Morasca and Lavazza in [24] conducted a study on
choosing the best and relevant portion of the ROC curves,
obtained from the predictions of the SDP model. The
study proposed a new measure called the ratio of rele-
vant areas (RRA) for evaluating the SDP models by taking
only the parts of the ROC curves corresponding to the
various values of the threshold. Their work also addresses
the shortcomings of the widely used performance mea-
sures such as Area Under the Curve (AUC) and the Gini
coefficient. However, in summary, their approach pro-
vides a theoretical illustration for the use of traditional
measures in reducing the misclassification costs of the
defect proneness models.

Recently, Sharma et al. in [1] discussed the short-
comings of widely used traditional measures such as
F-measure and AUC, and proposed five project-specific
performance measures to capture the important observa-
tions from the prediction model in terms of the project ob-
jectives. The study suggests using an interpretable mea-
sure that provides the predictions from the SDP model in
terms of cost, service time, and failure, as these are the es-
sential objectives to be accomplished from the prediction
model.

Providing an empirical analysis of the prediction mod-
els by illustrating their performances in terms of the
project-specific attributes is the primary research gap in
SDP research. Hence, by extending the study of Sharma
et al. in [1], in this work, we provide an empirical evalua-
tion of the widely used defect prediction variants such as
WPDP, CPDP, and M-CPDP models in order to validate
the use of the project-specific performance measures.

QuASoQ 2022 - Preprint

23

Table 1
The PROMISE projects

Project Modules LoC Defects %Defects Project Modules LoC Defects %Defects
Ant-1.3 125 37,699 20 16.00 Camel-1.4 872 98,080 145 16.63
Ant-1.4 178 54,195 40 22.47 Camel-1.6 965 113,055 188 19.48
Ant-1.5 293 87,047 32 10.92 Jedit-3.2 272 128,883 90 33.09
Ant-1.6 351 113,246 92 26.21 Jedit-4.0 306 144,803 75 24.51
Ant-1.7 745 208,653 166 22.28 Jedit-4.1 312 153,087 79 25.32
Camel-1.0 339 33,721 13 03.83 Jedit-4.2 367 170,683 48 13.08
Camel-1.2 608 66,302 216 35.53 Jedit-4.3 492 202,363 11 02.24

Table 2
The confusion matrix

Actual values
Defective Clean

Predicted values
Defective TP FP

Clean FN TN

3. Project-Specific Measures
In this section, we present the details of the project-
specific performance measures, such as percent of perfect
cleans, percent of non-perfect cleans, false-omission rate,
percent of saved budget, and percent of remaining edits.

The measures PPC and PSB interpret the predictions
of the SDP model in terms of cost units, while the PNPC
and PRE interpret the predictions in terms of service
time units. The measure FOR is used to measure the fail-
ure chances from the misclassification of the defective
modules. All the measures use the information from the
confusion matrix (given in Table 2) among which the
measures PPC, PNPC, PSB, and PRE measures utilise an
extra attribute called lines of code (LoC) to compute the
prediction performances. A detailed explanation of these
measures is presented below.

1. Percent of Perfect Cleans (PPC): Since the true
negatives (TN) represent the reduced work load, the mea-
sure PPC helps in deriving the percentage of reduced
work load on the tester. The PPC is derived as the ratio
of total TNs to total test instances.

PPC =
|𝑇𝑁 |
|𝑛𝑡|

(1)

Where |𝑛𝑡| is the number of test instances.
2. Percent of Saved Budget (PSB): Using the measure
PPC and an additional attribute called LoC, we esti-
mate the total amount of saved budget in the developing
project. The PSB is calculated as:

PSB =

∑︁
𝑖∈𝑇𝑁

𝑆𝐵(𝐿𝑜𝐶𝑖)∑︁
𝑖∈𝑛𝑡

𝑆𝐵(𝐿𝑜𝐶𝑖)
(2)

Here, we assign a unit cost for servicing each line of code.
3. Percent of Non-Perfect Cleans (PNPC): In con-
trast to the measure PPC, PNPC is used to represent the
percent of work load on the tester from the prediction
model. This is because, except for the modules in TN, the
tester has to conduct a code walk for all the remaining
modules. The measure PNPC is expressed as:

𝑃𝑁𝑃𝐶 =
|𝑛𝑡| − |𝑇𝑁 |

|𝑛𝑡|
(3)

4. Percent of Remaining Edits (PRE): Using the mea-
sure PNPC and an additional attribute called LoC, we
estimate the total service time which is remaining for the
tester after utilising the prediction model. Here, for each
line of code, we assign a unit time to calculate the service
time. This measure is defined below:

PRE =

∑︁
𝑖∈𝑛𝑡−𝑇𝑁

𝑅𝐸(𝐿𝑜𝐶𝑖)∑︁
𝑖∈𝑛𝑡

𝑅𝐸(𝐿𝑜𝐶𝑖)
(4)

5. False-Omission Rate (FOR): Unlike other measures,
using the measure FOR, we calculate the total failures in
the project with the use of SDP models. The major cause
of the failures is when the defective module is predicted
as clean. Since the total clean modules represents the
combination of the false negatives and true negatives,
the software may experience failure when the end user
triggers a false negative module. Assuming each false
negative instance can cause a single failure in the system,
the percent of failure instances is measured as:

FOR =
|𝐹𝑁 |

|𝑇𝑁 |+ |𝐹𝑁 | (5)

Note that, the definitions of all these measure are directly
taken from the work [1].

4. Study Design
In this section, we provide the details of the utilised
datasets (in Section 4.1) and the base-line classifiers (in

QuASoQ 2022 - Preprint

24

Section 4.2). The details of the non-parametric test called
Cliff’s delta effect size test is provided in Section 4.3. An
abstract procedure for the empirical approach is given in
Section 4.4.

4.1. Utilised Defects Data
For the empirical analysis, we use publicly available 14
datasets from the PROMISE repository [25]. Each project
consist of 24 metrics to describe the software module.
Here, the software module can be either a class, method,
or a program. We use each software metric as a feature to
build the prediction model. A description of the utilised
datasets is presented in Table 1.

4.2. Baseline Machine Learners
We perform empirical analysis for three SDP variants us-
ing three widely used base-line ML models: SVM, 𝑘-NN,
and DT. A short description of the utilised baseline ML
classifiers is given below.

SVM Classifier: We used a linear kernel function in the
training process to compute some extreme data transfor-
mations for obtaining the separable data.

𝑘-NN Classifier: The value of 𝑘 is selected for the 𝑘-
nearest neighbour (𝑘-NN) model based on 10-fold cross
validation. Appropriately, we have chosen 𝑘 to be 11
after testing the model with various values of 𝑘.

Decision Tree Classifier: We have used a general clas-
sification and regression trees approach to build the DT
classifier.

4.3. Statistical Significance Test
To observe the deviation between the the SDP models, we
conduct a non-parametric test called Cliff’s delta. This
measure provides four levels of effectiveness of the one
model over the other models. These levels are given in
table 3. The larger value of Cliff’s delta indicates the
greater effect between the models.

Table 3
Cliff’s delta effect size levels [26]

S.No |𝛿| Effectiveness Category

1 0.000 ≤ |𝛿| < 0.147 Negligible
2 0.147 ≤ |𝛿| < 0.330 Small
3 0.330 ≤ |𝛿| < 0.474 Medium
4 0.474 ≤ |𝛿| ≤ 1.000 Strong

4.4. Empirical Approach
An empirical evaluation is carried out on each variant of
the SDP model. This is because each variant of SDP has

different implementation criteria. However, we provide
an empirical comparison of the developed models since
each variant provides predictions on the same target
project dataset. A general training procedure for the
three tasks such as WPDP, CPDP, and M-CPDP is given
below.

4.4.1. Training and Testing

The WPDP Model: Assume each software project has
the availability of local data. Now, we train each base-
line ML model on the released versions of the software
project [10]. The modules in the latest version (target
version or the target project) of the same project are then
given as input to the trained WPDP model, in order to
observe the predictions.

The CPDP Model: Assume each software project does
not have the availability of local data. Now, we train each
base-line ML model on the released software projects’
defects data [1]. The modules in the newly developed
software project (or the target project) are then given as
input to the trained CPDP model, in order to observe the
predictions.

The M-CPDP Model: Assume each software project
has the availability of local data. Also, we assume that
defect data for the source projects is available. Now, we
train each base-line ML model on the defects data cre-
ated by augmenting the data from the software project’s
released versions and the data from the source projects
[21]. The modules in the latest version (target version
or target project) of the target project are then given as
input to the trained M-CPDP model, in order to observe
the predictions.

4.4.2. Comparative Approach

To understand the role of project-specific measures in
interpreting the performance of the best defect prediction
model, we followed the below approach:

Empirical Procedure:
1. First, we use base-line classifiers such as SVM,

𝑘-NN, and DT to train the variants of the SDP
models such as WPDP, CPDP, and M-CPDP on
the PROMISE projects. Each model is evaluated
on 10-fold cross validation to observe the mean
predictions.

2. Second, we observe the average performances of
the trained WPDP, CPDP, and M-CPDP using the
project-specific performance measures on each
target project.

3. Third, in terms of each base-line classifier, us-
ing Cliff’s delta effect-size test, we compared the
performances of the WPDP, CPDP, and M-CPDP
using the project-specific performance measures.

QuASoQ 2022 - Preprint

25

Table 4
Performances of the variants of the SDP models that uses SVM as base classifier

Target Project PPC PSC PNPC PRE
WPDP CPDP M-CPDP WPDP CPDP M-CPDP WPDP CPDP M-CPDP WPDP CPDP M-CPDP

Ant-1.3 0.6912 0.8309 0.8223 0.5632 0.6645 0.6423 0.3088 0.1691 0.1777 0.4368 0.3355 0.3577
Ant-1.4 0.6031 0.7428 0.8310 0.6174 0.7187 0.7322 0.3969 0.2572 0.1690 0.3826 0.2813 0.2678
Ant-1.5 0.6931 0.8328 0.8881 0.5652 0.6665 0.6724 0.3069 0.1672 0.1119 0.4348 0.3335 0.3276
Ant-1.6 0.5481 0.6878 0.6592 0.3719 0.4732 0.4613 0.4519 0.3122 0.3408 0.6281 0.5268 0.5387
Ant-1.7 0.5799 0.7196 0.7081 0.3567 0.4580 0.4325 0.4201 0.2804 0.2919 0.6433 0.5420 0.5676

Camel-1.0 0.8082 0.9479 0.9581 0.8163 0.9176 0.9213 0.1918 0.0521 0.0419 0.1837 0.0824 0.0787
Camel-1.2 0.5021 0.6418 0.6614 0.4610 0.5623 0.5747 0.4979 0.3582 0.3386 0.5390 0.4377 0.4253
Camel-1.4 0.7009 0.8406 0.8526 0.6170 0.7183 0.7313 0.2991 0.1594 0.1474 0.3830 0.2817 0.2687
Camel-1.6 0.6589 0.7986 0.8114 0.5921 0.6934 0.7269 0.3411 0.2014 0.1886 0.4079 0.3066 0.2731
Jedit-3.2 0.3819 0.5216 0.4614 0.1756 0.2769 0.2614 0.6181 0.4784 0.5386 0.8244 0.7231 0.7386
Jedit-4.0 0.5339 0.6736 0.5582 0.4492 0.5505 0.5132 0.4661 0.3264 0.4418 0.5508 0.4495 0.4868
Jedit-4.1 0.4826 0.6223 0.4593 0.1877 0.2890 0.2233 0.5174 0.3777 0.5407 0.8123 0.7110 0.7767
Jedit-4.2 0.5620 0.7017 0.6064 0.4619 0.5632 0.4633 0.4380 0.2983 0.3936 0.5381 0.4368 0.5367
Jedit-4.3 0.6660 0.8057 0.9047 0.6877 0.7890 0.8027 0.3340 0.1943 0.0953 0.3123 0.2110 0.1973
Average 0.6008 0.7405 0.7273 0.4945 0.5958 0.5828 0.3992 0.2595 0.2727 0.5055 0.4042 0.4172

Cliff’s Delta 0.4692 0 - 0.2959 0 - 0.4692 0 - 0.2959 0 -

Table 5
Performances of the variants of the SDP models that uses 𝑘-NN as base classifier

Target Project PPC PSC PNPC PRE
WPDP CPDP M-CPDP WPDP CPDP M-CPDP WPDP CPDP M-CPDP WPDP CPDP M-CPDP

Ant-1.3 0.5826 0.7223 0.7615 0.5632 0.6645 0.6766 0.4174 0.2777 0.2385 0.4368 0.3355 0.3234
Ant-1.4 0.5559 0.6956 0.6526 0.5611 0.6624 0.6525 0.4441 0.3044 0.3474 0.4389 0.3376 0.3475
Ant-1.5 0.6817 0.8214 0.8724 0.6911 0.7924 0.8056 0.3183 0.1786 0.1276 0.3089 0.2076 0.1944
Ant-1.6 0.5195 0.6592 0.6767 0.4633 0.5646 0.5852 0.4805 0.3408 0.3233 0.5367 0.4354 0.4148
Ant-1.7 0.5567 0.6964 0.7209 0.5226 0.6239 0.6525 0.4433 0.3036 0.2791 0.4774 0.3761 0.3475

Camel-1.0 0.7703 0.9100 0.9534 0.7205 0.8218 0.8413 0.2297 0.0900 0.0466 0.2795 0.1782 0.1587
Camel-1.2 0.4826 0.6223 0.6102 0.4763 0.5776 0.5614 0.5174 0.3777 0.3898 0.5237 0.4224 0.4386
Camel-1.4 0.7028 0.8425 0.8728 0.6300 0.7313 0.7433 0.2972 0.1575 0.1272 0.3700 0.2687 0.2567
Camel-1.6 0.6127 0.7524 0.7728 0.6021 0.7034 0.7313 0.3873 0.2476 0.2272 0.3979 0.2966 0.2687
Jedit-3.2 0.4318 0.5715 0.5544 0.4230 0.5243 0.5162 0.5682 0.4285 0.4456 0.5770 0.4757 0.4838
Jedit-4.0 0.4686 0.6083 0.6223 0.4714 0.5727 0.5785 0.5314 0.3917 0.3777 0.5286 0.4273 0.4215
Jedit-4.1 0.4661 0.6058 0.5248 0.4719 0.5732 0.5304 0.5339 0.3942 0.4752 0.5281 0.4268 0.4696
Jedit-4.2 0.5220 0.6617 0.6728 0.5219 0.6232 0.6269 0.4780 0.3383 0.3272 0.4781 0.3768 0.3731
Jedit-4.3 0.6137 0.7534 0.8052 0.6052 0.7065 0.7491 0.3863 0.2466 0.1948 0.3948 0.2935 0.2509
Average 0.5691 0.7088 0.7195 0.5517 0.6530 0.6608 0.4309 0.2912 0.2805 0.4483 0.3470 0.3392

Cliff’s Delta 0.6429 0.0561 - 0.5816 0.0664 - 0.6429 0.0561 - 0.5816 0.0664 -

5. Study Results
In this section, we report the observed results of the
WPDP, CPDP, and M-CPDP models in terms of the
project-specific performance measures.

Tables 4, 5, and 6 provide the performances of the
defect prediction models such as WPDP, CPDP, and M-
CPDP on the 14 target projects in terms of the measures
such as PPC, PSB, PNPC, and PRE, respectively. These
tables also provide the results of the Cliff’s delta effect-
size test. The models such as WPDP, CPDP, and M-CPDP
in Table 4 utilised the SVM as a base classifier to observe
the predictions on the target datasets, whereas the models
in Table 5 utilised the 𝑘-NN as a base classifier to observe
the predictions on the target datasets. And, the models
in Table 6 utilised the DT as a base classifier to observe
the predictions on the target datasets.

From Table 4, it is observed that, in the majority of
cases, the SVM-based CPDP outperformed the other mod-
els in terms of all the performance measures. In particular,
the average PPC of the CPDP model has achieved a better

value when compared with the other models. Therefore,
the testers do not need to visit 74.05% modules to find
their defect-proneness. As a consequence, on an average,
the savings in the total allocated budget is more using
the CPDP model when compared with the other models.
Assume a total of 100% allocated budget on the project.
Using the CPDP model, the project manager can save up
to 59.58% of the budget, whereas with the use of the other
models such as WPDP and M-CPDP, the project manager
can save only 49.45% and 58.28% of the budget, respec-
tively. On the contrary, since the PNPC is the converse of
the measure PPC, the resultant measure PRE also shows
its benefits using the CPDP model. Using SVM-based
CPDP model, on an average, the testers will have to con-
duct a code walk on the 40.42% of the total written code.
If the testers utilise either WPDP or M-CPDP models,
respectively, they have to spend 50.55% and 41.72% of
the total written code to observe the defective content.
However, the Cliff’s delta effect-size test indicating that
there is no greater effect between the models such as
CPDP and M-CPDP.

5

QuASoQ 2022 - Preprint

26

Table 6
Performances of the variants of the SDP models that uses DT as base classifier

Target Project PPC PSC PNPC PRE
WPDP CPDP M-CPDP WPDP CPDP M-CPDP WPDP CPDP M-CPDP WPDP CPDP M-CPDP

Ant-1.3 0.7037 0.8434 0.8545 0.6849 0.7862 0.7966 0.2963 0.1566 0.1455 0.3151 0.2138 0.2034
Ant-1.4 0.6218 0.7615 0.8314 0.6210 0.7223 0.7313 0.3782 0.2385 0.1686 0.3790 0.2777 0.2687
Ant-1.5 0.6998 0.8395 0.8615 0.7219 0.8232 0.7913 0.3002 0.1605 0.1385 0.2781 0.1768 0.2087
Ant-1.6 0.5817 0.7214 0.7323 0.6077 0.7090 0.6594 0.4183 0.2786 0.2677 0.3923 0.2910 0.3406
Ant-1.7 0.5774 0.7171 0.7089 0.6010 0.7023 0.6947 0.4226 0.2829 0.2911 0.3990 0.2977 0.3053

Camel-1.0 0.8129 0.9526 0.9723 0.7521 0.8534 0.8615 0.1871 0.0474 0.0277 0.2479 0.1466 0.1385
Camel-1.2 0.5130 0.6527 0.6617 0.5311 0.6324 0.6080 0.4870 0.3473 0.3383 0.4689 0.3676 0.3920
Camel-1.4 0.7129 0.8526 0.8633 0.7210 0.8223 0.7966 0.2871 0.1474 0.1367 0.2790 0.1777 0.2034
Camel-1.6 0.6684 0.8081 0.8216 0.6613 0.7626 0.7717 0.3316 0.1919 0.1784 0.3387 0.2374 0.2283
Jedit-3.2 0.3936 0.5333 0.5434 0.4113 0.5126 0.5056 0.6064 0.4667 0.4566 0.5887 0.4874 0.4944
Jedit-4.0 0.5659 0.7056 0.6767 0.5657 0.6670 0.6055 0.4341 0.2944 0.3233 0.4343 0.3330 0.3945
Jedit-4.1 0.4917 0.6314 0.6467 0.5014 0.6027 0.6115 0.5083 0.3686 0.3533 0.4986 0.3973 0.3885
Jedit-4.2 0.5826 0.7223 0.7314 0.6008 0.7021 0.6966 0.4174 0.2777 0.2686 0.3992 0.2979 0.3034
Jedit-4.3 0.6826 0.8223 0.8618 0.6910 0.7923 0.7622 0.3174 0.1777 0.1382 0.3090 0.2077 0.2378
Average 0.6149 0.7546 0.7691 0.6194 0.7207 0.7066 0.3851 0.2454 0.2309 0.3806 0.2793 0.2934

Cliff’s Delta 0.6735 0.1429 - 0.5205 -0.1021 - 0.6735 0.1429 - 0.5205 -0.1021 -

Figure 1: The box-plots representing the observed FOR values
on the three models that uses SVM as base classifier

From Table 5, it is observed that, in the majority of
cases, the 𝑘-NN-based M-CPDP outperformed the other
models in terms of all the performance measures. In
particular, the average PPC of the M-CPDP model has
achieved a better value when compared with the other
models. Hence, the testers do not need to conduct a code
review on 71.95% modules to find their defect-proneness.
As a consequence, on an average, the savings in the to-
tal allocated budget is more using the M-CPDP model
when compared with the other models. For a total of
100% allocated budget on the project, using the M-CPDP
model, the project manager can save up to 66.08% of
the budget, whereas with the use of the other models
such as WPDP and CPDP, the project manager can save

Figure 2: The box-plots representing the observed FOR values
on the three models that uses 𝑘-NN as base classifier.

55.17% and 65.30% of the budget, respectively. On the
other hand, using 𝑘-NN-based M-CPDP model, on an
average, the testers will have to conduct a code walk
only on the 33.92% of the total written code. If the testers
utilise either WPDP or CPDP models, respectively, they
have to spend 44.83% and 34.70% of the total written code
to observe the defective content. The Cliff’s delta effect-
size test indicating that there is a negligible but positive
effect from the M-CPDP model over the CPDP model.

From Table 6, it is observed that, in the majority of
cases, the DT-based M-CPDP outperformed the other
models in terms of the performance measures such as
PPC and PNPC. While the model CPDP performed bet-
ter than the other models in terms of measures such as

QuASoQ 2022 - Preprint

27

Figure 3: The box-plots representing the observed FOR values
on the three models that uses DT as base classifier.

PSB and PRE. In particular, the average PPC of the M-
CPDP model has achieved a better value when compared
with the other models. Hence, the testers do not need to
conduct a code review on 76.91% modules to find their
defect-proneness. In contrast, on an average, the sav-
ings in the total allocated budget is more using CPDP
model, when compared with the other models. On a to-
tal of 100% allocated budget on the project, using CPDP
model, the project manager can save up to 72.07% of the
budget, whereas with the use of the other models such
as WPDP and M-CPDP, the project manager can save
61.94% and 70.66% of the budget, respectively. On the
other hand, using the DT-based CPDP model, on an aver-
age, the testers will have to conduct a code walk only on
the 27.93% of the total written code. If the testers utilise
either WPDP or M-CPDP models, respectively, they have
to spend 38.06% and 29.34% of the total written code to
observe the defective content. The Cliff’s delta effect-size
test indicating that there is a negligible but positive effect
from the M-CPDP model over the CPDP model in terms
of PPC and PNPC measures. In terms of PSC and PRE,
the Cliff’s delta effect-size test indicating that there is a
negligible but negative effect from the M-CPDP model
over the CPDP model.

The box-plots in Figures 1, 2, and 3 represent the
chances of failure incidents as a result of SVM, 𝑘-NN,
and DT-based SDP models in the target projects. From
Figures 1, 2, and 3, it is observed that, the median failure
incidents are fewer using the M-CPDP model (which is
trained using three classifiers) when compared with the
other models. Since any software project should least

expect a misclassifications from the prediction model,
the M-CPDP model may suit well in real-time testing
environments.

5.1. Discussion
Any project seeks benefits from the prediction model,
hence, achieving its goal is of primary importance to the
researcher. The major obstacle in selecting the model is
obtaining a trade-off between the obtained performances
from the various prediction models. In Section 5, we ob-
serve that, on the majority of target projects, the CPDP
model has achieved its better performance in terms of
PPC and PNPC. This shows that the CPDP model is good
at predicting clean modules more accurately. However,
surprisingly, the M-CPDP model has shown its strength
in terms of budget savings, minimal service time, and
more importantly, minimal failure incidents on the major-
ity of the target projects. Hence, even though the CPDP
model is better in terms of PPC and PNPC, the M-CPDP
is better in terms of all the performance measures.

From Tables 4, 5, and 6, and Figures 1, 2, and 3, it
is observed that, among all the baselines, after 10-fold
cross validation, the decision tree-based M-CPDP model
has achieved maximum budget savings, minimal service
time, and minimal failure incidents on the majority of
the target projects.

6. Threats to Validity
Variation in the observed performances at various work-
ing environments is common in the empirical research.
In this section, we present the factors that may affect the
observed performances.

Internal Validity:

The observed performances are based on the usage of a
few base-line ML models, and the M-CPDP model has
shown its strength using majority of the baselines. How-
ever, implementing the other baselines such as logistic
regression, neural networks, ensemble models, etc. on
the other widely used repositories such as NASA, AEEEM,
ReLink, etc. is the major threat that may hinder the final
performance of the M-CPDP model.

External Validity:

For the purpose of knowing the best model that is suitable
for the real-time testing environments, we performed an
empirical analysis on only three variants of SDP using the
project-specific performance measures. The generalised
conclusions can be made when conducting the empirical
analysis on the other variants of the SDP such as MPDP,
pair-wise CPDP, just-in time software defect prediction
(JIT-SDP), and heterogeneous defect prediction (HDP).

QuASoQ 2022 - Preprint

28

7. Conclusion and Future Work
The research on proposing the software defect predic-
tion (SDP) models is intended to diminish the workload
on the tester by providing intelligent decisions on the
defect-proneness of the newly developed software mod-
ule. Hence, the objective of the SDP models is to decrease
the time, cost, and manpower that are being spent on the
software project. Inherently, the task of the SDP models
is also to reduce the risk of misclassification (in particu-
lar, false negatives). In this regard, Sharma et al. in [1]
proposed project-specific performance measures such as
percent of perfect-cleans, percent of saved budget, per-
cent of non-perfect cleans, percent of remaining edits,
and false omission rate to interpret the obtained results
in terms of the project objectives. Since it is important for
the software engineering researcher to provide a better
prediction model, it is necessary to interpret the results
in terms of the project-specific objectives.

Extending the work of Sharma et al.[1], in this paper,
we conducted an empirical analysis of the interpreta-
tion of the project-specific performance measures on the
variants of SDP such as WPDP, CPDP, and mixed-CPDP.
With the empirical analysis of the PROMISE projects, we
conclude that the models such as CPDP and M-CPDP
have achieved significantly better performances in terms
of all the measures than the WPDP model. Among CPDP
and M-CPDP, we observe that the number of failure inci-
dents is lower with the use of the M-CPDP models. Also,
on the majority of the target projects, the software man-
agers may benefit from the use of M-CPDP models in
terms of maximum savings in the allocated budget and
minimal time required to service the code. Hence, we
recommend using M-CPDP models in real-time testing
environments.

Possible future research directions from this work in-
clude: (1) conducting a large-scale empirical analysis of
all the variants of SDP on widely-used defect reposito-
ries such as PROMISE, NASA, AEEEM, ReLink, GitHub,
etc. using the project-specific performance measures. (2)
estimating the real-time feasibility of the M-CPDP model.

References
[1] U. S. B., R. Sadam, How far does the pre-

dictive decision impact the software project?
the cost, service time, and failure analysis
from a cross-project defect prediction model,
Journal of Systems and Software 195 (2023)
111522. URL: https://www.sciencedirect.com/
science/article/pii/S0164121222001984. doi:https:
//doi.org/10.1016/j.jss.2022.111522.

[2] V. R. Basili, L. C. Briand, W. L. Melo, A Validation
of Object-Oriented Design Metrics as Quality In-

dicators, IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING 22 (1996).

[3] V. U. B. Challagulla, F. B. Bastani, R. Paul, Empirical
Assessment of Machine Learning based Software
Defect Prediction Techniques, 10th IEEE Interna-
tional Workshop on Object-Oriented Real-Time De-
pendable Systems (2005) 263–270.

[4] S. Lessmann, B. Baesens, C. Mues, S. Pietsch, Bench-
marking classification models for software defect
prediction: A proposed framework and novel find-
ings, IEEE Transactions on Software Engineering
34 (2008) 485–496.

[5] C. Catal, B. Diri, A systematic review of software
fault prediction studies, Expert Systems with Ap-
plications 36 (2009) 7346–7354.

[6] M. D’Ambros, M. Lanza, R. Robbes, Evaluating de-
fect prediction approaches: a benchmark and an
extensive comparison, Empirical Software Engi-
neering 17 (2012) 531–577.

[7] B. Ghotra, S. McIntosh, A. E. Hassan, A large-scale
study of the impact of feature selection techniques
on defect classification models, in: 2017 IEEE/ACM
14th International Conference on Mining Software
Repositories (MSR), IEEE, 2017, pp. 146–157.

[8] D. Di Nucci, F. Palomba, G. De Rosa, G. Bavota,
R. Oliveto, A. De Lucia, A Developer Centered Bug
Prediction Model, IEEE Transactions on Software
Engineering (2018).

[9] L. Kumar, S. K. Sripada, A. Sureka, S. K. Rath, Effec-
tive fault prediction model developed using least
square support vector machine (lssvm), Journal of
Systems and Software 137 (2018) 686–712.

[10] U. S. Bhutamapuram, R. Sadam, With-in-project de-
fect prediction using bootstrap aggregation based
diverse ensemble learning technique, Journal
of King Saud University-Computer and Informa-
tion Sciences (2021). URL: https://doi.org/10.1016/j.
jksuci.2021.09.010.

[11] J. Xu, F. Wang, J. Ai, Defect prediction with seman-
tics and context features of codes based on graph
representation learning, IEEE Transactions on Reli-
ability (2020).

[12] L. C. Briand, W. L. Melo, J. Wust, Assessing the ap-
plicability of fault-proneness models across object-
oriented software projects, IEEE transactions on
Software Engineering 28 (2002) 706–720.

[13] T. M. Khoshgoftaar, E. B. Allen, J. Deng, Using re-
gression trees to classify fault-prone software mod-
ules, IEEE Transactions on Reliability (2002).

[14] T. Menzies, J. DiStefano, A. Orrego, R. Chapman,
Assessing predictors of software defects, in: Proc.
Workshop Predictive Software Models, 2004.

[15] K. O. Elish, M. O. Elish, Predicting defect-prone
software modules using support vector machines,
Journal of Systems and Software 81 (2008) 649–660.

QuASoQ 2022 - Preprint

29

https://www.sciencedirect.com/science/article/pii/S0164121222001984
https://www.sciencedirect.com/science/article/pii/S0164121222001984
http://dx.doi.org/https://doi.org/10.1016/j.jss.2022.111522
http://dx.doi.org/https://doi.org/10.1016/j.jss.2022.111522
https://doi.org/10.1016/j.jksuci.2021.09.010
https://doi.org/10.1016/j.jksuci.2021.09.010

[16] T. Zimmermann, N. Nagappan, H. Gall, E. Giger,
B. Murphy, Cross-project defect prediction: a large
scale experiment on data vs. domain vs. process,
in: Proceedings of the 7th joint meeting of the Eu-
ropean software engineering conference and the
ACM SIGSOFT symposium on The foundations of
software engineering, 2009, pp. 91–100.

[17] I. H. Laradji, M. Alshayeb, L. Ghouti, Software de-
fect prediction using ensemble learning on selected
features, Information and Software Technology 58
(2015) 388–402.

[18] L. Kumar, S. Misra, S. K. Rath, An empirical anal-
ysis of the effectiveness of software metrics and
fault prediction model for identifying faulty classes,
Computer standards & interfaces 53 (2017) 1–32.

[19] S. Hosseini, B. Turhan, M. Mäntylä, A benchmark
study on the effectiveness of search-based data se-
lection and feature selection for cross project defect
prediction, Information and Software Technology
95 (2018) 296–312.

[20] H. Chen, X.-Y. Jing, Z. Li, D. Wu, Y. Peng, Z. Huang,
An empirical study on heterogeneous defect predic-
tion approaches, IEEE Transactions on Software
Engineering (2020).

[21] S. Herbold, A. Trautsch, J. Grabowski, A compar-
ative study to benchmark cross-project defect pre-
diction approaches, IEEE Transactions on Software
Engineering 44 (2017) 811–833.

[22] C. Ni, X. Chen, F. Wu, Y. Shen, Q. Gu, An empiri-
cal study on pareto based multi-objective feature
selection for software defect prediction, Journal of
Systems and Software 152 (2019) 215–238.

[23] Y. Jiang, B. Cukic, Y. Ma, Techniques for evaluat-
ing fault prediction models, Empirical Software
Engineering 13 (2008) 561–595.

[24] S. Morasca, L. Lavazza, On the assessment of soft-
ware defect prediction models via roc curves, Em-
pirical Software Engineering 25 (2020) 3977–4019.

[25] J. Sayyad Shirabad, T. Menzies, The PROMISE
Repository of Software Engineering Databases,
School of Information Technology and Engineer-
ing, University of Ottawa, Canada, 2005. URL: http:
//promise.site.uottawa.ca/SERepository.

[26] N. Cliff, Dominance statistics: Ordinal analyses to
answer ordinal questions., Psychological bulletin
114 (1993) 494.

QuASoQ 2022 - Preprint

30

http://promise.site.uottawa.ca/SERepository
http://promise.site.uottawa.ca/SERepository

Towards Model Driven Safety and Security by Design
Miguel Campusano, Simon Hacks and Eun-Young Kang

SDU Software Engineering, Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense

Abstract
Software is getting more and more complex, while it gets more and more important to make it safe and secure. At the same
time, the expectations towards the software developers increase and it is unrealistic that they are able to cope properly with all
safety and security requirements. To enable developers to focus on the important parts of the system, model driven software
development got widely adopted. Within this work, we extend this approach by proposing an architecture, which allows to
automatize the analysis of the safety and security properties of the system under design. After the analysis of the system,
feedback will be provided to the developers so that they are able to reason about the design decisions that they recently made.
To discuss our approach, we rely on a model driven approach for drone mission planning and envision how the different
components of the architecture would need to interact.

Keywords
Model Driven Software Engineering, Automatized Analysis, Safety, Security, Model Checking

1. Introduction
The complexity of software is increasing as the prob-
lems that software solves are getting more and more dif-
ficult [1]. This is particularly true when software is used
to interact with the real world, by physical interaction
using cyber-physical systems, or by providing remote in-
terfaces to enable interaction from all over the world [2].
Due to this interaction, there are new demands toward
the safety and security of such safety-critical systems:
systems should not harm the people using them nor ne-
glect access to the system from an unauthorized source.
However, because of the complexity of these systems, it
is unreasonable to expect developers to produce bug-free,
safe and secure code. For this, models play a central role,
as high-level abstraction allows developers to focus on
the fundamental complexity of the systems (i.e., what
the system is supposed to do) instead of their incidental
complexity (e.g., safety and security) [3]. This high-level
abstraction allows developers to build safe and secure
code by design by taking care of the incidental complexity.
As it is challenging to include proper safety and security
measures into a system subsequently, it is preferable to
follow a safety/security by design approach while devel-
oping a software system [4]. In each development phase,
the respective measures can be included instead of cum-
bersomely included at the end. This increases the safety
and security of the system, while reducing the needed
effort to introduce the needed measures.

QuASoQ 2022: 10th International Workshop on Quantitative Ap-
proaches to Software Quality, December 06, 2022, virtual
Envelope-Open mica@mmmi.sdu.dk (M. Campusano); shacks@mmmi.sdu.dk
(S. Hacks); eyk@mmmi.sdu.dk (E. Kang)
Orcid 0000-0002-7894-6635 (M. Campusano); 0000-0003-0478-9347
(S. Hacks); 0000-0002-4589-2378 (E. Kang)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

There is a pressing need for methods and tools to ver-
ify and validate reliability of software systems, i.e., all
software we build should be correct, robust, safe, and
secure under certain circumstances. To prove safety and
achieve error-free software systems, formal reasoning
and methods are used by detecting when the system tran-
sitions into an unsafe state (i.e., one where it violates a
critical safety requirement) [5, 6]. While testing can pro-
vide some reassurance that the systems being developed
are bug-free, it is limited by the skills and expertise of the
tester. It is not guaranteed that testing can find all errors
or show their absence whereas formal verification can
by employing exhaustive analysis [7]. Thus, the use of a
combination of both approaches and software engineer-
ing techniques ensures potential errors are captured as
early as possible. Our focus is on the use of formal meth-
ods alongside testing approaches, formal verification can
be applied to establish functional correctness and can be
combined with model-driven testing. This approach is
integrated into a development workflow and provides
correct configurations and practical considerations of
design from an industrial perspective.
There are different approaches to achieve security by

design for software systems [4]. One approach is to con-
tinuously perform penetration tests of the system under
development [8]. However, this requires a large portion
of resources to be permanently executed. Moreover, this
requires already a system that can be tested. Another
option is to perform attack simulations on a threat model
that represents the system based on known vulnerabili-
ties. This allows not only an easy security assessment of
the actual system under development, but also it is possi-
ble to compare the security properties of different possi-
ble systems without having them already developed [9].

To enable software developers to assess the safety and
security of their systems in almost real-time, it is nat-

QuASoQ 2022 - Preprint

31

mailto:mica@mmmi.sdu.dk
mailto:shacks@mmmi.sdu.dk
mailto:eyk@mmmi.sdu.dk
https://orcid.org/0000-0002-7894-6635
https://orcid.org/0000-0003-0478-9347
https://orcid.org/0000-0002-4589-2378
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Figure 1: Simplified ROS-DOTS architecture. The different lines represent different types of interaction: black arrows are
request/response calls, white arrows are callbacks, and dotted lines are constant data flow by publish/subscribe pattern.

ural to combine the beforehand presented approaches.
Therefore, the models and design created by developers
are not solely used for implementing and generating the
system, but they are also transformed automatically into
the respective representations that are needed for the
assessment of the safety and security. In the background,
the assessment will be executed and as soon as the re-
sults are available, the developer gets informed about
potential safety or security issues in their actual software
architecture thought these same models. In a second step,
the developer also gets suggestions how to improve the
safety and security based on the comparison of different
possible evolutions of the actual architecture.

Within this work, we present the first step towards an
automatized model driven safety and security assessment
of software systems. To achieve this, we discuss first
the background of Model Driven Software Development,
Safety Assessment, and Security Assessment. Afterwards,
we present our vision of achieving a model driven safety
and security assessment before we discuss first insights
and how we plan to continue our work.

2. Background and Related Work

2.1. Model Driven Software Development
Model Driven Software Development (MDSD) refers to
using software abstractions to separate fundamental and
incidental complexity of systems. These abstractions are
done by models, which are the representation of the es-
sential aspects of the system. By using them, developers
can define structures and behaviors on these systems
efficiently, considering the domain-specific aspects of the
systems. Then, developers can use this high-level abstrac-
tion of the designed system to generate executable source
code by a sequence of model transformations [10, 11].
Any modeling approach is described using metamod-

els [11]. Models are abstractions over similar programs
while metamodels are abstractions over similar models
from a particular domain. One specific way of designing
systems using models is first designing a metamodel in
the form of a Domain Specific Language (DSL). A DSL is a
concise language that describes a solution of a particular
domain. Developers can use the DSL to define programs
that specify the behaviors of the different models of the
system. Moreover, the domain abstractions allow the
DSL to be used by developers and domain experts [12].
We have successfully used MDSD to develop Un-

manned Aerial Systems (UAS), commonly refers as
drones. We built a DSL for the specification of multi-UAS
missions, called Drone Operation Template Specification
(DOTS) [13], which uses specific languages constructions
to coordinate the use of several UAS in the airspace. The
DOTS programs are then loaded to a service-oriented
architecture called ROS-DOTS [14] (Robot Operation Sys-
tem (ROS)). This architecture provides several services
for UAS, in particular multi-UAS mission planning (i.e.,
specification of UAS flight paths to fulfill a goal), dynamic
replanning of missions (i.e., flight paths modification of
ongoing UAS missions), and a detect-and-avoid system
(i.e., local collision alerting of UAS). Figure 1 shows a
simplified version of ROS-DOTS.

2.2. Safety Assessment
Safety assessment methods include preliminary and sys-
tem hazard and risk analysis, fault tree generation and
analysis, failure mode and effects analysis. Despite such
well-established methods provide an efficient support
for safety engineers, the methods could benefit from an
integration with system modeling, verification, and vali-
dation (V&V) environments. Efforts have been put into
investigation of safety assessment through the MDSE
based on general purpose System Modeling Language
(SysML) [15], Similar studies are also conducted in other

QuASoQ 2022 - Preprint

32

modeling language such as EAST-ADL [16, 17, 18, 19]
or AADL [20] that support writing transformation rules
towards formal languages to permit their analysis by for-
mal tools. However, these languages are limited for robot
design compared to our domain specific UAS and meta at-
tack languages. Systems theory process analysis (STPA)
[21, 22, 23] has been studied in the context of unifying
both safety and security assessment. However, their ap-
proaches lack formalism that limits formal V&V. As far
as we know, our approach is the first to combine both
safety and security assessment based on MDSE, STPA,
attack simulations, and formal V&V to guarantee trust-
worthiness in cyber-physical systems, e.g., robot, UAS,
manufacturing, and IoT systems, etc.

To reasoning about and analysis of a design model it is
essential that the modeling language has a well-defined
(informal or formal) semantics. For cyber-physical sys-
tems (which heavily rely on the real-time aspect) a
promising approach to provide analysis of models is to
formally specify systems in a modeling language such
as Timed Automata (TA) [24]. A TA is a finite state ma-
chine extended with clocks, where a clock is a variable
over the positive real numbers. All clocks in a TA star
at zero, grow continuously at the same rate, and can be
tested and reset to zero. Clocks are tested using con-
straints on clocks, called guards. A TA over actions 𝐴
is defined as a tuple < 𝑁 , 𝑙0, 𝐸, 𝑉𝐶, 𝐼 >, where 𝑁 and 𝐸
are the locations and edges, 𝑙0 ∈ 𝑁 is the initial location,
𝑉𝐶 is the set of clock variables, and 𝐼 ∶ 𝑁 ⟼ 𝐺 with
guards 𝑔 ∈ 𝐺, actions 𝑎 ∈ 𝐴, and a set of clocks 𝑟 ⊆ 𝑉𝐶 to
be reset (an alternative notation is 𝑥 ∶= 0 for the rest of
a clock 𝑥). Figure 3 shows an example of a TA (model
in right side), which is a formal representation of the
RiskStatus state diagram (in left side). The actions used
in the TA are risky and no_risky . The location No Alert
is marked initial, as indicated by an extra circle inside
it. The edge from No Alert to Alert is labelled with the
action risky with a guard status . The mode has a clock
Time , which is used to measure the time elapsed since the
action no_risk . The location After Alert is labelled with
a clock invariant to ensure that the delay is less than five
time units between the actions no_risky and risky/reset
time . Edges are labelled with guards to ensure that the
delay is more than five time units and the current status
is not alert, i.e., status != alert .

2.3. Security Assessment
Designing secure and reliable systems is challenging and
attackers constantly find opportunities to compromise
systems. There are different countermeasures at the dis-
posal of organizations to cope with this challenge, such
as applying best practices (e.g., OWASP [25]), penetra-
tion testing [26], established frameworks (e.g., Process
for Attack Simulation and Threat Analysis (PASTA) [27]),

or threat modeling [9].
Here, we facilitate threat modeling to analyze the se-

curity properties of the system under design. Via threat
modeling one wants to reason about the complexity of a
system, as well as identifying potential threats [28]. Usu-
ally, this is done by graphs, where each of the threats is
modeled as a node and they are connected by edges [29].
Given a threat model, attack simulations allow to analyze
attack scenarios on the described infrastructure [30, 31].

More concretely, we rely on the Meta Attack Language
(MAL) as tool to perform our attack simulations. For a
detailed overview of the MAL, we refer readers to the
original paper [32]. First, a MAL DSL contains the main
concepts of a domain under study, so called assets . An
asset contains attack steps , which represent the actual
attacks/threats that can be executed.

An attack step can be connected with n following steps
creating an attack path, which is used for the attack sim-
ulation. Attack steps can be either OR or AND. Addition-
ally, each attack step can be related with specific types of
risks (i.e., confidentiality (C), integrity (I), and availability
(A)). Furthermore, we have defenses at our disposal that
do not allow connected attack steps to be performed. Fi-
nally, we can assign probability distributions to represent
the effort to complete the related attack step. Assets have
relations between them, so called associations . More-
over, we have inheritance between assets and each child
asset inherits all the attack steps of the parent asset. Ad-
ditionally, the assets can be organized into categories.

In List. 1, a short example of a MAL DSL is presented.
In this example, we have four assets and their connections
of attack steps from one asset to another. In the Host
asset, the connect attack step is an OR attack step, while
access is an AND attack step. The -> symbol denotes the
connected next attack step. For example, if an attacker
performs phish on the User , it is possible to reach obtain
on the associated Password and as a result finally perform
authenticate on the associated Host . In the last lines of the
example the associations between the assets are defined.

3. Automated Safety and Security
Assessment

3.1. Architecture Framework
TheMDSD approach allows developers to design systems
using high-level abstractions (i.e., models). Then, these
abstractions generate executable source code correspond-
ing to the system’s behavior. Our objective is to use an
MDSD approach to model and build systems considering
safety and security in their design. To do this, we plan
to reuse the same abstractions that define programs to
generate safety and security assessment artifacts. This
conceptual model and the interaction between the sys-

QuASoQ 2022 - Preprint

33

Figure 2: Methodology Roadmap

Figure 3: ros-state diagram for the risk status behavior of Detect and Avoid (DAA) service (left side) and its corresponding
TA (right side)

Figure 4: Conceptual feedback of a privacy issue of a UAS
moving to a location given directly in the DOTS DSL.

tem architecture, safety assessment, and security attack
simulations can be seen in Figure 2. In the context of
this work, we use the example of defining multi-UAS
missions. In this system, we have two different high-
level definitions: models derived over the DOTS DSL and

models derived over the services and their interactions
in the ROS-DOTS architecture.

First, the assessment of the safety and security proper-
ties of the models generated by the DSL can be explicitly
shown to developers. To allow this level of feedback, a
bi-directional connection between the models and the
generated artifacts that validate security and safety prop-
erties should be available. In other words, models should
generate artifacts in a way that the artifacts can relate
to the models that generated them. Then, like in every
modern Integrated Development Environment (IDE), the
system can mark the problematic lines of code in the DSL
program with a meaningful message for developers to
fix the problems. For example, we can consider the case
of a UAS transporting a package from point A to B. An
operator can use any UAS capable of carrying a payload
for this action. However, the system may restrict the use

QuASoQ 2022 - Preprint

34

1 c a t e go ry System {
2 a s s e t Network {
3 | a c c e s s
4 −> ho s t s . connec t
5 }
6
7 a s s e t Host {
8 | connec t
9 −> a c c e s s
10 | a u t h e n t i c a t e
11 −> a c c e s s
12 | guessPwd
13 −> guessedPwd
14 | guessedPwd [Exp (0 . 0 2)]
15 −> a u t h e n t i c a t e
16 & a c c e s s {C , I ,A}
17 }
18
19 a s s e t User {
20 | a t t emp tPh i s h i ng
21 −> ph i sh
22 | ph i sh [Exp (0 . 1)]
23 −> passwords . o b t a i n
24 }
25
26 a s s e t Password {
27 | o b t a i n {C }
28 −> hos t . a u t h e n t i c a t e
29 }
30 }
31
32 a s s o c i a t i o n s {
33 Network [networks] ∗
34 <−− NetworkAccess −−> ∗ [ho s t s] Host
35 Host [hos t] 1
36 <−− C r e d e n t i a l s −−> ∗ [passwords] Password
37 User [u s e r] 1
38 <−− C r e d e n t i a l s −−> ∗ [passwords] Password
39 }

Listing 1: Exemplary MAL Code

of a UAS with extra properties, which can entail security
issues, for example, a UAS with a camera attached. An
attacker can intercept the link between the UAS and the
operator, accessing the camera images, which can bring
privacy issues for the people living around the path of the
UAS. While a UAS with a camera is essential for other use
cases (e.g., monitoring a geographical area), we want to
limit the use of the right UAS for the right job, to reduce
security and safety issues. Figure 4 shows a concept of
how this feedback can be displayed in DOTS.
Second, the safety and security properties of the ar-

chitecture itself should also be checked and informed to
developers. To do this, we can use the same idea of a
bi-directional connection between the executable archi-
tecture and the generated artifacts that check security
and safety properties. The architecture can generate
artifacts to test properties over single services and the
communication between multiple services. One example
of a single service test is to check how the detect-and-
avoid service works (DAA in Figure 1). This service alerts
operators when a UAS is in a direct collision path with
an external agent in the airspace. It is vital to check the
safety properties of this service to ensure a safe interac-
tion of agents in the airspace.

As a key example of a multi-service architecture tester,
we present the dynamic replanning feature. This feature
replans the path of every UAS involved in a mission when
new constraints that affect the original plan are added
into the airspace. This feature uses three services: Plan-
ner, Mission Monitor, and Dynamic Replanning. Suppose
the dynamic replan service returns a plan with safety
problems, such as 2 UAS in a direct path against each
other. In that case, our safety checker can inform this
issue directly to developers.

3.2. Formal framework for Safety and
Security Assessment

To be trustworthy, systems need to remain safe and
secure while being resilient to unpredictable changes,
functional/operational failures and cyber-security threats.
Rigorous V&V is essential to ensure trustworthiness of
systems and clear definition of requirements is an impor-
tant prerequisite for V&V.
Most engineering practice highly relies on V&V test-

and-fix of system nature, which is time-consuming, ex-
pensive, and limiting the possibilities for exploration of
alternatives in system design. Thus, we provide a correct-
by-construction approach based on a combination of anal-
ysis techniques such as Systems Theoretic Process Anal-
ysis (STPA) [21] and formal verification such as model
checking to generate critical requirements, remove am-
biguities in the requirements, and specify formal safety
and security properties that should be satisfied by the
system. We also suggest a modularized/compositional
approach for formal modeling to enhance re-usability
and to reduce the complexity of formal modeling.
To facilitate the formal verification, the system ar-

chitecture (illustrated in Figure 2) consisting of a set of
function/service blocks and its operational behaviors are
translated into a formal modeling description, UPPAAL
1 TA. To explicitly annotate and reason about the func-
tional or operational behavior of each block (e.g., DAA
in Figure 1) at the architecture level, we first adopt a
state diagram (RiskStatus ros-state diagram in Figure
3) and extend it with a UML profile which integrates
relevant concepts from our ROS-DOTS. Such a profiled
model is then translated into a formal modeling descrip-
tion, UPPAAL TA. The translation process is supported
in fully automatic by using our DSL. The communica-
tions between different blocks are also transformed into
synchronization channels among other TAs in UPPAAL.
Indeed, each asset and its behavioral logic in Listing 1
are visualized in a TA and the associations are repre-
sented in synchronization channels among different TAs.

1https://uppaal.org. An integrated tool environment for formal mod-
eling, validation and verification of real-time systems modeled as
networks of TA

QuASoQ 2022 - Preprint

35

Figure 5: Sketch of a possible uasLang for security analysis

Similarly, a path-planning TA can be generated based on
the Planner block and its ros-state diagram .

The auto-generated TA model is then amenable to for-
mal verification using a UPPAAL model checker against
safety and security requirements. Furthermore, addi-
tional safety and security constraints are identified based
on STPA and feedback from model checking and attack
simulation (which will be further explained in the follow-
ing section). The system design can be refined by adding
the new constraints which inhibit any hazards. Finally,
we prove correctness and consistency of the safety and
security constraints through formal verification and im-
prove the system’s design accordingly. In addition to
formal verification, testing can be performed to validate
the implementation (code as written/automatically gen-
erated by our DSL) actually runs correctly w.r.t. to the
safe and secure design/specification.

The security of a system is affected by a broad variety
of aspects. Formal verification of a system is an important
step to assure to its security. However, to get a complete
verification of the system, every detail about the system
must be known. Moreover, depending on the system’s
size, a complete verification is time intensive and, thus,
usually only conducted for extremely sensitive system
like rockets transporting humans to space. Alternatively,
a verification on an abstracted view of the system can be
conducted, which is less time intensive, but accompanied
by the cost of a not complete verification.
To address this shortcoming, we foresee in our archi-

tecture to not solely rely on verification, but also on
threat modeling and attack simulations as they are also
able to cope with incomplete information (i.e., ”known
unkowns” [33]). We facilitate MAL [32] as vehicle to per-
form out attack simulations. More concretely, we imag-
ine a uasLang (cf. Figure 5) that might reuse certain parts

of existing MAL languages [34], such as coreLang [35]
for the fundamental IT parts or icsLang [36] for the op-
eration technology (OT) similar parts (e.g., sensors or
actuators).

In the following, we will shortly elaborate on the differ-
ent assets that we envision in a possible uasLang . Firstly,
we have the assets often referred to as cyber physical
system. There is the UAS itself, which is the hardware
platform carrying the Payload. Moreover, a UAS has Sen-
sors, which help it to orientate itself in the real-world.
The entire platform is controlled by the Firmware, which
processes the incoming data from the Sensors and com-
municates with the controlling assets Planner and Moni-
toring.

The Planner is the central unit coordinating the differ-
ent UAS and the routes they are taking to reach to their
waypoints. The Monitoring receives the actual state of
the UAS and provides an interface to external systems
that might further process this data. Further, both assets
can incorporate External Libraries, e.g., to perform better
routing or providing additional reporting capabilities.
The communication between the UAS and the con-

trolling units takes place in classical Local Network, like
Ethernet, in which the IT parts are hosted and a Mobile
Network, like 5G, that covers the operation area of the
UAS. These two networks are usually separated by some
kind of Router restricting the network access.
Given uasLang and the models created during the

model driven software development, we are now able
to create a threat model that represents the actual in-
frastructure and perform attack simulations in securi-
CAD [30]. The simulations will tell us potential threats
in the architecture and in which time an attacker might
be able to exploit them. This information is then played
back to the developer, so that they are able to determine

QuASoQ 2022 - Preprint

36

possible countermeasures in their system’s architecture
to improve the security.

4. Challenges & Future Directions
The distinctive features of cyber-physical systems with
regard to model checking are their complexity, modular-
ity and the need to comply with safety and security re-
quirements, which means that every failure result should
be thoroughly analyzed and fixed. Despite being one of
the most reliable approaches for ensuring system cor-
rectness, model checking requires additional knowledge
about a system as a whole and efforts aimed to localize
an error in the model of the system. A tool or frame-
work that supports user-friendly model checking which
focuses on explanation of negative verification results
and performs an analysis that the refined system design
is still consistent would be highly beneficial. For example,
in the system verification process, once a violation of a
safety or security constraint/requirement is detected, a
counterexample (failure trace) generated by a UPPAAL
model checker that can be visualized in the architecture
model in order to pinpoint on which time step/block has
caused the property failure. Seemingly including such
aspects into our framework and tool is crucial for making
the formal verification techniques more approachable to
engineers.
For the security assessment, we recognize that not

all parts of the architecture (cf. Figure 1) are reflected
one-to-one in uasLang . However, this is no issue due to
two reasons. Firstly, the security assessment takes the
point of view of an attacker. Thus, we are not solely in-
terested in the system’s architecture, but to all parts that
are exposed to the environment. Consequently, uasLang
contains further information (e.g., on concrete UAS de-
ployed), that might be provided from outside of our pre-
sented solution. Other parts of the architecture might
not be of greater relevance for the security assessment
(e.g., the web server), as they do not change in our set-
ting (and even do not have a representation in the used
model driven software development approach) and thus
do not have any influence on the outcome of the attack
simulation results.

Secondly, it is recommended to base a newly developed
MAL DSL on another existing MAL DSL [34, 37]. Conse-
quently, we would base uasLang at least on coreLang [35].
In other words, wewould have all assets available that are
available in the base language (i.e., coreLang) and, thus,
would be able to model all IT related assets presented in
Figure 1.

Moreover, we have more consideration on the model-
ing of the architecture, when we relate this modeling to
users and developers. For example, a DSL is built to be
concise, to have the necessary features to describe the so-

lution using models, and no more. However, developers
may need to define extra properties for assessing security
and safety properties, that are not needed to solve the
problem itself. In other words, they may need to define
aspects of the incidental complexity of the problem they
are solving. While this may be an issue, we envision an
architecture where developers should declare as few as
possible incidental properties. In addition, even when
they need to declare these properties, the system may
allow them to define them in other parts of the system,
such as configuration files, environment variables, di-
rectly into the architecture, etc.

Finally, we are aware that checking safety and security
properties may take some time, making it inappropriate
to give feedback to developers when they are writing
their programs. Even when certain properties can be
checked fast enough to give them while developers write
their programs, we need to be aware of the properties
that can take more time. For the properties that take
a considerable amount of time, we envision a system
that gives feedback to developers when the program is
running (similar to debugging), or when the program
finishes its execution (similar to the case of automatic
testing or continuous integration/delivery systems).

References
[1] T. Mens, On the complexity of software systems,

Computer 45 (2012) 79–81.
[2] K. Zhang, D. Han, H. Feng, Research on the

complexity in internet of things, in: 2010 In-
ternational Conference on Advanced Intelligence
and Awarenss Internet (AIAI 2010), IET, 2010, pp.
395–398.

[3] O. Pastor, S. España, J. I. Panach, N. Aquino, Model-
driven development, Informatik-Spektrum 31
(2008) 394–407.

[4] M. Waidner, M. Backes, J. Müller-Quade, Develop-
ment of secure software with security by design,
Fraunhofer-Verlag, 2014.

[5] E. M. Clarke, J. M. Wing, Formal methods: State of
the art and future directions, ACM Comput. Surv.
28 (1996) 626–643.

[6] F. Benaben, M. Larnac, J. Pignon, J. Magnier, A pro-
cess for improving multi-technology system high
level design: Modeling, verification and validation
of complex optronic systems, in: 2000 International
Conference On Systems, Man & Cybernetics, vol-
ume 1–5, IEEE, 2000, pp. 1036–1040.

[7] C. Baier, J.-P. Katoen, Principles of Model Checking,
MIT Press, Cambridge, 2007.

[8] B. Arkin, S. Stender, G. McGraw, Software pene-
tration testing, IEEE Security & Privacy 3 (2005)
84–87.

QuASoQ 2022 - Preprint

37

[9] W. Xiong, R. Lagerström, Threat modeling–a sys-
tematic literature review, Computers & security 84
(2019) 53–69.

[10] S. Beydeda, M. Book, V. Gruhn, et al., Model-driven
software development, volume 15, Springer, 2005.

[11] M. Völter, T. Stahl, J. Bettin, A. Haase, S. Helsen,
Model-driven software development: technology,
engineering, management, John Wiley & Sons,
2013.

[12] M. Fowler, R. Parsons, Domain-specific languages,
Addison-Wesley Professional, 2010.

[13] M. Campusano, N. Heltner, N. Mølby, K. Jensen,
U. P. Schultz, Towards declarative specification
of multi-drone bvlos missions for utm, in: 2020
Fourth IEEE International Conference on Robotic
Computing (IRC), IEEE, 2020, pp. 430–431.

[14] M. Campusano, K. Jensen, U. P. Schultz, To-
wards a service-oriented u-space architecture for
autonomous drone operations, in: 2021 IEEE/ACM
3rd International Workshop on Robotics Software
Engineering (RoSE), IEEE, 2021, pp. 63–66.

[15] P. David, V. Idasiak, F. Kratz, Reliability study of
complex physical systems using sysml, Reliability
Engineering & System Safety 95 (2010) 431–450.

[16] EAST-ADL, last accessed on 20.10.2022. http://
maenad.eu/index.htm.

[17] E. Kang, P. Schobbens, Schedulability analysis sup-
port for automotive systems: from requirement to
implementation, in: Symposium on Applied Com-
puting, ACM, 2014, pp. 1080–1085.

[18] L. Huang, T. Liang, E. Kang, Tool-supported anal-
ysis of dynamic and stochastic behaviors in cyber-
physical systems, in: 19th International Conference
on Software Quality, Reliability and Security, IEEE,
2019, pp. 228–239.

[19] E. Kang, G. Perrouin, P. Schobbens, Model-based
verification of energy-aware real-time automotive
systems, in: 18th International Conference on Engi-
neering of Complex Computer Systems, IEEE, 2013,
pp. 135–144.

[20] P. Feiler, D. Gluch, Model-Based Engineering with
AADL: An Introduction to the SAE Architecture
Analysis & Design Language, Addison-Wesley Pro-
fessional, 2012.

[21] N. Leveson, J. Thomas, STPA Handbook, Cam-
bridge, 2018.

[22] I. Friedberg, K. McLaughlin, P. Smith, D. Laverty,
S. Sezer, STPA-SafeSec: Safety and security analysis
for cyber-physical systems, Journal of Information
Security and Applications 34 (2017) 183–196.

[23] W. Young, N. G. Leveson, An integrated approach to
safety and security based on systems theory, Com-
mun. ACM 57 (2014) 31–35. doi:10.1145/2556938 .

[24] R. Alur, D. L. Dill, A theory of timed automata,
Theoretical Computer Science 126 (1994) 183–235.

[25] M. Bach-Nutman, Understanding the top 10 owasp
vulnerabilities, arXiv preprint arXiv:2012.09960
(2020).

[26] M. Bishop, About penetration testing, IEEE Security
& Privacy 5 (2007) 84–87.

[27] M. M. Morana, T. Uceda Vélez, Risk centric threat
modeling: Process for attack simulation and threat
analysis, John Wiley & Sons, Hoboken, New Jersey,
2015.

[28] A. Shostack, Threat modeling: Designing for secu-
rity, Wiley, Indianapolis, IN, USA, 2014.

[29] S. Myagmar, A. J. Lee, W. Yurcik, Threat modeling
as a basis for security requirements, in: SREIS,
volume 2005, Citeseer, 2005, pp. 1–8.

[30] M. Ekstedt, P. Johnson, R. Lagerström, D. Gorton,
J. Nydrén, K. Shahzad, securiCAD by foreseeti:
A CAD tool for enterprise cyber security manage-
ment, in: 19th International EDOCWorkshop, IEEE,
2015, pp. 152–155.

[31] H. Holm, K. Shahzad, M. Buschle, M. Ekstedt, P2Cy-
SeMoL: Predictive, probabilistic cyber security mod-
eling language, IEEE Trans Dependable Secure
Comput 12 (2015) 626–639.

[32] P. Johnson, R. Lagerström, M. Ekstedt, A meta lan-
guage for threat modeling and attack simulations,
in: 13th ARES Conference, 2018, pp. 1–8.

[33] S. Hacks, M. Kaczmarek-Heß, S. de Kinderen,
D. Töpel, A multi-level cyber-security reference
model in support of vulnerability analysis, in: In-
ternational Conference on Enterprise Design, Oper-
ations, and Computing, Springer, 2022, pp. 19–35.

[34] S. Hacks, S. Katsikeas, Towards an ecosystem of
domain specific languages for threat modeling, in:
International Conference on Advanced Information
Systems Engineering, Springer, 2021, pp. 3–18.

[35] S. Katsikeas, S. Hacks, P. Johnson, M. Ekstedt,
R. Lagerström, J. Jacobsson, M. Wällstedt, P. Elias-
son, An attack simulation language for the it do-
main, in: International Workshop on Graphical
Models for Security, Springer, 2020, pp. 67–86.

[36] S. Hacks, S. Katsikeas, E. Ling, R. Lagerström, M. Ek-
stedt, powerlang: a probabilistic attack simulation
language for the power domain, Energy Informatics
3 (2020) 1–17.

[37] S. Hacks, S. Katsikeas, E. Rencelj Ling, W. Xiong,
J. Pfeiffer, A. Wortmann, Towards a systematic
method for developing meta attack language in-
stances, in: International Conference on Business
Process Modeling, Development and Support, Inter-
national Conference on Evaluation and Modeling
Methods for Systems Analysis and Development,
Springer, 2022, pp. 139–154.

QuASoQ 2022 - Preprint

38

http://maenad.eu/index.htm
http://maenad.eu/index.htm
http://dx.doi.org/10.1145/2556938

	Frontpage
	Paper-01-QUASOQ
	1 Introduction
	2 Cross-version bug prediction and its balance problem
	2.1 Cross-version bug prediction
	2.2 Problem of change of balance between versions

	3 Proposed solution
	3.1 Bandit algorithm
	3.2 Basic idea to solve the change of balance problem
	3.3 Proposed algorithm

	4 Evaluation
	4.1 Data set
	4.2 Bug prediction model
	4.3 Accuracy measures
	4.4 Result and discussion

	5 Threats to validity
	6 Conclusion
	7 Acknowledgement

	Paper-02-QUASOQ
	1 Introduction
	2 Related Work
	2.1 Gadget Chain
	2.2 Fingerprinting-based Detection
	2.3 Active Discovery Detection

	3 Propose Approach
	3.1 Gadget Core
	3.2 Static Analysis
	3.3 Dynamic Verification
	3.3.1 Gadget Core Growth Method
	3.3.2 Deserialization Verification

	4 Evaluate
	4.1 Results and Discussion

	5 Conclusion

	Paper-03-QUASOQ
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Dataset Description
	3.2 Approach
	3.2.1 Analyzing Using Clustering Techniques
	3.2.2 Analyzing using Supervised Machine Learning Algorithms

	4 Experimental Analysis
	4.1 Performance Evaluation
	4.2 Results and Discussion

	5 Threats to Validity
	6 Conclusion

	Paper-04-QUASOQ
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Project-Specific Measures
	4 Study Design
	4.1 Utilised Defects Data
	4.2 Baseline Machine Learners
	4.3 Statistical Significance Test
	4.4 Empirical Approach
	4.4.1 Training and Testing
	4.4.2 Comparative Approach

	5 Study Results
	5.1 Discussion

	6 Threats to Validity
	7 Conclusion and Future Work

	Paper-05-QUASOQ
	1 Introduction
	2 Background and Related Work
	2.1 Model Driven Software Development
	2.2 Safety Assessment
	2.3 Security Assessment

	3 Automated Safety and Security Assessment
	3.1 Architecture Framework
	3.2 Formal framework for Safety and Security Assessment

	4 Challenges & Future Directions

